BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1649108)

  • 1. On the reactions of superoxide with keto enols, aci-reductones and ascorbic acid derivatives.
    Frimer AA; Marks V; Gilinsky-Sharon P
    Free Radic Res Commun; 1991; 12-13 Pt 1():93-8. PubMed ID: 1649108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents].
    Riabchenko NI; Riabchenko VI; Ivannik BP; Dzikovskaia LA; Sin'kova RV; Grosheva IP; Degtiareva ES; Ivanova TI
    Radiats Biol Radioecol; 2010; 50(2):186-94. PubMed ID: 20464967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha-Tocopherol oxidation mediated by superoxide anion (O2-). I. Reactions in aprotic and protic conditions.
    Csallany AS; Ha YL
    Lipids; 1992 Mar; 27(3):195-200. PubMed ID: 1326070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can superoxide organic chemistry be observed within the liposomal bilayer?
    Frimer AA; Strul G; Buch J; Gottlieb HE
    Free Radic Biol Med; 1996; 20(6):843-52. PubMed ID: 8728033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis.
    Martin JP; Batkoff B
    Free Radic Biol Med; 1987; 3(4):241-50. PubMed ID: 3121448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation by superoxide of tocopherols dispersed in aqueous media with deoxycholate.
    Nishikimi M; Yamada H; Yagi K
    Biochim Biophys Acta; 1980 Jan; 627(1):101-8. PubMed ID: 6243495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity and activation of dioxygen-derived species in aprotic media (a model matrix for biomembranes).
    Sawyer DT; Roberts JL; Calderwood TS; Sugimoto H; McDowell MS
    Philos Trans R Soc Lond B Biol Sci; 1985 Dec; 311(1152):483-503. PubMed ID: 2869513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a TBA reaction product from crown ether in the presence of KO2.
    Suzuki H; Kakinuma K
    J Biochem; 1979 Jun; 85(6):1547-9. PubMed ID: 222746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-radical chain oxidation of 2-nitropropane initiated and propagated by superoxide.
    Kuo CF; Fridovich I
    Biochem J; 1986 Jul; 237(2):505-10. PubMed ID: 3026320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen uptake and involvement of superoxide radicals upon photolysis of ketones in air-saturated aqueous alcohol, formate, amine or ascorbic acid solutions.
    Görner H
    Photochem Photobiol; 2006; 82(3):801-8. PubMed ID: 16506866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxyradicals under UV-b stress and their quenching by antioxidants.
    Jain K; Kataria S; Guruprasad KN
    Indian J Exp Biol; 2004 Sep; 42(9):884-92. PubMed ID: 15462181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical oxidation of nitrated polycyclic aromatic hydrocarbons: hydroxylation with superoxide anion radical.
    Fukuhara K; Miyata N
    Chem Res Toxicol; 1995; 8(1):27-33. PubMed ID: 7703362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further insights into the oxidation chemistry and biochemistry of the serotonergic neurotoxin 5,6-dihydroxytryptamine.
    Singh S; Dryhurst G
    J Med Chem; 1990 Nov; 33(11):3035-44. PubMed ID: 2172537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and enzyme-mediated oxidation of the serotonergic neurotoxin 5,7-dihydroxytryptamine: mechanistic insights.
    Tabatabaie T; Dryhurst G
    J Med Chem; 1992 Jun; 35(12):2261-74. PubMed ID: 1319496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders.
    Wrona MZ; Dryhurst G
    Chem Res Toxicol; 1998 Jun; 11(6):639-50. PubMed ID: 9625732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbic acid: a scavenger of superoxide radical.
    Som S; Raha C; Chatterjee IB
    Acta Vitaminol Enzymol; 1983; 5(4):243-50. PubMed ID: 6324567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.