These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16491331)

  • 1. Structure optimization of microvascular scaffolds.
    Wang GJ; Hsu YF
    Biomed Microdevices; 2006 Mar; 8(1):51-8. PubMed ID: 16491331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JSR photolithography based microvessel scaffold fabrication and cell seeding.
    Wang GJ; Hsu YF; Hsu SH; Horng RH
    Biomed Microdevices; 2006 Mar; 8(1):17-23. PubMed ID: 16491327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvessel scaffold with circular microchannels by photoresist melting.
    Wang GJ; Ho KH; Hsu SH; Wang KP
    Biomed Microdevices; 2007 Oct; 9(5):657-63. PubMed ID: 17534716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns.
    Itoga K; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2006 May; 27(15):3005-9. PubMed ID: 16455135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds.
    Lee SJ; Kang HW; Park JK; Rhie JW; Hahn SK; Cho DW
    Biomed Microdevices; 2008 Apr; 10(2):233-41. PubMed ID: 17885804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.
    Hutmacher DW; Sittinger M; Risbud MV
    Trends Biotechnol; 2004 Jul; 22(7):354-62. PubMed ID: 15245908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential for the use of nanofeaturing in medical devices.
    Curtis A
    Expert Rev Med Devices; 2005 May; 2(3):293-301. PubMed ID: 16288593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds.
    Rajagopalan S; Robb RA
    Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unique physical-chemistry approach for fabricating cell friendly surfaces.
    Irvine S; Sullivan AC; McEwan JR; Jayasinghe SN
    Biotechnol J; 2008 Jan; 3(1):124-8. PubMed ID: 17722180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries.
    Nikkhah M; Strobl JS; Agah M
    Biomed Microdevices; 2009 Apr; 11(2):429-41. PubMed ID: 19058013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration on computer-designed nano-fibrous scaffolds.
    Chen VJ; Smith LA; Ma PX
    Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
    García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C
    Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex microstructured 3D surfaces using chitosan biopolymer.
    Fernandez JG; Mills CA; Samitier J
    Small; 2009 Mar; 5(5):614-20. PubMed ID: 19263425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses.
    Bilodeau K; Couet F; Boccafoschi F; Mantovani D
    Artif Organs; 2005 Nov; 29(11):906-12. PubMed ID: 16266305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.