These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16491335)
1. Fabrication and testing of microelectrodes for small-field cortical surface recordings. Kitzmiller J; Beversdorf D; Hansford D Biomed Microdevices; 2006 Mar; 8(1):81-5. PubMed ID: 16491335 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials. Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223 [TBL] [Abstract][Full Text] [Related]
3. A cortical recording platform utilizing microECoG electrode arrays. Kim J; Wilson JA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217 [TBL] [Abstract][Full Text] [Related]
12. Magnetic field perturbation of neural recording and stimulating microelectrodes. Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456 [TBL] [Abstract][Full Text] [Related]
13. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
14. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study. Sanchez JC; Alba N; Nishida T; Batich C; Carney PR IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298 [TBL] [Abstract][Full Text] [Related]
15. In vivo validation of the electronic depth control probes. Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890 [TBL] [Abstract][Full Text] [Related]
16. Application of floating silicon-based linear multielectrode arrays for acute recording of single neuron activity in awake behaving monkeys. Bonini L; Maranesi M; Livi A; Bruni S; Fogassi L; Holzhammer T; Paul O; Ruther P Biomed Tech (Berl); 2014 Aug; 59(4):273-81. PubMed ID: 24434299 [TBL] [Abstract][Full Text] [Related]
17. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. Kipke DR; Vetter RJ; Williams JC; Hetke JF IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. Kim R; Nam Y J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544 [TBL] [Abstract][Full Text] [Related]
19. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173 [TBL] [Abstract][Full Text] [Related]
20. A photosensitive polyimide based method for an easy fabrication of multichannel neural electrodes. Kato YX; Maki K; Furukawa S; Kashino M Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5802-5. PubMed ID: 19164036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]