These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16492020)

  • 21. Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics.
    Panthani MG; Akhavan V; Goodfellow B; Schmidtke JP; Dunn L; Dodabalapur A; Barbara PF; Korgel BA
    J Am Chem Soc; 2008 Dec; 130(49):16770-7. PubMed ID: 19049468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors.
    Boyer JC; Vetrone F; Cuccia LA; Capobianco JA
    J Am Chem Soc; 2006 Jun; 128(23):7444-5. PubMed ID: 16756290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A heterostructure composed of conjugated polymer and copper sulfide nanoparticles.
    Narizzano R; Erokhin V; Nicolini C
    J Phys Chem B; 2005 Aug; 109(33):15798-802. PubMed ID: 16853006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sonochemical method for preparation of copper indium sulfide nanoparticles and their application for solar cell.
    Amiri O; Salavati-Niasari M; Sabet M; Ghanbari D
    Comb Chem High Throughput Screen; 2014 Feb; 17(2):183-9. PubMed ID: 23962129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes.
    Kuzuya T; Itoh K; Sumiyama K
    J Colloid Interface Sci; 2008 Mar; 319(2):565-71. PubMed ID: 18155227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation pathway of CuInSe2 nanocrystals for solar cells.
    Kar M; Agrawal R; Hillhouse HW
    J Am Chem Soc; 2011 Nov; 133(43):17239-47. PubMed ID: 21879767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape-controlled growth of In(OH)3/In2O3 nanostructures by electrodeposition.
    Chu D; Masuda Y; Ohji T; Kato K
    Langmuir; 2010 Sep; 26(18):14814-20. PubMed ID: 20726607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alloyed (ZnS)x(CuInS2)(1-x) semiconductor nanorods: synthesis, bandgap tuning and photocatalytic properties.
    Ye C; Regulacio MD; Lim SH; Xu QH; Han MY
    Chemistry; 2012 Sep; 18(36):11258-63. PubMed ID: 22865784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of copper sulfide seeds in the growth process of CuInS2 nanorods and networks.
    Li J; Bloemen M; Parisi J; Kolny-Olesiak J
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20535-43. PubMed ID: 25347208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism.
    Regulacio MD; Ye C; Lim SH; Bosman M; Ye E; Chen S; Xu QH; Han MY
    Chemistry; 2012 Mar; 18(11):3127-31. PubMed ID: 22334488
    [No Abstract]   [Full Text] [Related]  

  • 31. Growth of dandelion-shaped CuInSe2 nanostructures by a two-step solvothermal process.
    Zhou W; Yin Z; Sim DH; Zhang H; Ma J; Hng HH; Yan Q
    Nanotechnology; 2011 May; 22(19):195607. PubMed ID: 21436506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catanionic-surfactant-controlled morphosynthesis and gas-sensing properties of corundum-type In(2)O(3).
    Fan Y; Li Z; Wang L; Zhan J
    Nanotechnology; 2009 Jul; 20(28):285501. PubMed ID: 19550008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production.
    Kandiel TA; Anjum DH; Takanabe K
    ChemSusChem; 2014 Nov; 7(11):3112-21. PubMed ID: 25187083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Palladium-catalyzed carbon-sulfur cross-coupling reactions with indium tri(organothiolate) and its application to sequential one-pot processes.
    Lee JY; Lee PH
    J Org Chem; 2008 Sep; 73(18):7413-6. PubMed ID: 18712924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological tuning, self-assembly and optical properties of indium oxide nanocrystals.
    Ye E; Zhang SY; Lim SH; Liu S; Han MY
    Phys Chem Chem Phys; 2010 Oct; 12(38):11923-9. PubMed ID: 20820551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres.
    Li XH; Li JX; Li GD; Liu DP; Chen JS
    Chemistry; 2007; 13(31):8754-61. PubMed ID: 17676576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures.
    Xing Y; Zhang H; Song S; Feng J; Lei Y; Zhao L; Li M
    Chem Commun (Camb); 2008 Mar; (12):1476-8. PubMed ID: 18338061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoinduced thermal copper reduction onto gold nanocrystals under potentiostatic control.
    Redmond PL; Walter EC; Brus LE
    J Phys Chem B; 2006 Dec; 110(50):25158-62. PubMed ID: 17165959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A facile chemical route to semiconductor metal sulfide nanocrystal superlattices.
    Liu Z; Liang J; Xu D; Lu J; Qian Y
    Chem Commun (Camb); 2004 Dec; (23):2724-5. PubMed ID: 15568086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.