BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 16492767)

  • 1. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway.
    Kwon YT; Kashina AS; Varshavsky A
    Mol Cell Biol; 1999 Jan; 19(1):182-93. PubMed ID: 9858543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog.
    Suto K; Shimizu Y; Watanabe K; Ueda T; Fukai S; Nureki O; Tomita K
    EMBO J; 2006 Dec; 25(24):5942-50. PubMed ID: 17110926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis for the post-translational addition of amino acids by L/F transferase in the N-end rule pathway.
    Fung AW; Fahlman RP
    Curr Protein Pept Sci; 2015; 16(2):163-80. PubMed ID: 25692952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.
    Wadas B; Piatkov KI; Brower CS; Varshavsky A
    J Biol Chem; 2016 Sep; 291(40):20976-20992. PubMed ID: 27510035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates.
    Kim BH; Kim MK; Oh SJ; Nguyen KT; Kim JH; Varshavsky A; Hwang CS; Song HK
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2209597119. PubMed ID: 35878037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae.
    Balzi E; Choder M; Chen WN; Varshavsky A; Goffeau A
    J Biol Chem; 1990 May; 265(13):7464-71. PubMed ID: 2185248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway.
    Lee MJ; Tasaki T; Moroi K; An JY; Kimura S; Davydov IV; Kwon YT
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15030-5. PubMed ID: 16217033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and evolutionary conservation of the plant N-end rule pathway.
    Graciet E; Mesiti F; Wellmer F
    Plant J; 2010 Mar; 61(5):741-51. PubMed ID: 20003166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat.
    Shrader TE; Tobias JW; Varshavsky A
    J Bacteriol; 1993 Jul; 175(14):4364-74. PubMed ID: 8331068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies.
    Mogk A; Schmidt R; Bukau B
    Trends Cell Biol; 2007 Apr; 17(4):165-72. PubMed ID: 17306546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.
    Hu RG; Brower CS; Wang H; Davydov IV; Sheng J; Zhou J; Kwon YT; Varshavsky A
    J Biol Chem; 2006 Oct; 281(43):32559-73. PubMed ID: 16943202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates.
    Rai R; Kashina A
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10123-8. PubMed ID: 16002466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase.
    Romanyuk ND; Rigden DJ; Vatamaniuk OK; Lang A; Cahoon RE; Jez JM; Rea PA
    Plant Physiol; 2006 Jul; 141(3):858-69. PubMed ID: 16714405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay.
    Tsuji N; Nishikori S; Iwabe O; Matsumoto S; Shiraki K; Miyasaka H; Takagi M; Miyamoto K; Hirata K
    Planta; 2005 Sep; 222(1):181-91. PubMed ID: 15809863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
    Yoo YD; Mun SR; Ji CH; Sung KW; Kang KY; Heo AJ; Lee SH; An JY; Hwang J; Xie XQ; Ciechanover A; Kim BY; Kwon YT
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2716-E2724. PubMed ID: 29507222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leucyl/phenylalanyl-tRNA-protein transferase. Overexpression and characterization of substrate recognition, domain structure, and secondary structure.
    Abramochkin G; Shrader TE
    J Biol Chem; 1995 Sep; 270(35):20621-8. PubMed ID: 7657641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-end rule pathway is a sensor of heme.
    Hu RG; Wang H; Xia Z; Varshavsky A
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):76-81. PubMed ID: 18162538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain.
    Ichetovkin IE; Abramochkin G; Shrader TE
    J Biol Chem; 1997 Dec; 272(52):33009-14. PubMed ID: 9407082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of leucyl/phenylalanyl-tRNA-protein transferase from Escherichia coli.
    Dong X; Kato-Murayama M; Muramatsu T; Mori H; Shirouzu M; Bessho Y; Yokoyama S
    Protein Sci; 2007 Mar; 16(3):528-34. PubMed ID: 17242373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.