BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 16493551)

  • 1. Screening for candidate genes involved in tolerance to organic solvents in yeast.
    Matsui K; Hirayama T; Kuroda K; Shirahige K; Ashikari T; Ueda M
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):75-9. PubMed ID: 16493551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display.
    Miura S; Zou W; Ueda M; Tanaka A
    Appl Environ Microbiol; 2000 Nov; 66(11):4883-9. PubMed ID: 11055939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain.
    Matsui K; Teranishi S; Kamon S; Kuroda K; Ueda M
    Appl Environ Microbiol; 2008 Jul; 74(13):4222-5. PubMed ID: 18469127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of YLR162W in Saccharomyces cerevisiae results in increased tolerance to organic solvents.
    Kim HS
    Biotechnol Lett; 2016 Nov; 38(11):1955-1960. PubMed ID: 27488408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide.
    Zhang W; Needham DL; Coffin M; Rooker A; Hurban P; Tanzer MM; Shuster JR
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):57-69. PubMed ID: 12545388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae.
    Nishida N; Ozato N; Matsui K; Kuroda K; Ueda M
    J Biotechnol; 2013 May; 165(2):145-52. PubMed ID: 23523622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of an organic solvent-tolerant strain from baker's yeast.
    Kawamoto T; Kanda T; Tanaka A
    Appl Microbiol Biotechnol; 2001 May; 55(4):476-9. PubMed ID: 11398930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the pyruvate permease gene (JEN1) in glucose derepression yeast (Saccharomyces cerevisiae) Isolated from a 2-deoxyglucose-tolerant mutant, and its application to sake making.
    Tsuboi H; Wakisaka Y; Hirotsune M; Akao T; Yamada O; Akita O
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):765-71. PubMed ID: 12784616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.
    Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H
    Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-in-oil macroemulsions sustain long-term viability of microbial cells in organic solvents.
    Stefan A; Palazzo G; Ceglie A; Panzavolta E; Hochkoeppler A
    Biotechnol Bioeng; 2003 Feb; 81(3):323-8. PubMed ID: 12474255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide expression profile of sake brewing yeast under shaking and static conditions.
    Shobayashi M; Ukena E; Fujii T; Iefuji H
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):323-35. PubMed ID: 17284864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Saccharomyces cerevisiae mutant with pseudohyphae and cloning of a gene complementing the mutation.
    Maneesri J; Azuma M; Torii S; Igarashi K; Ooshima H
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):517-24. PubMed ID: 12723598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of differentially expressed genes in yeast Saccharomyces cerevisiae cells with inactivated Mmf1p and Hmf1p, members of proteins family YERO57c/YJGF.
    Pozdniakovaite N; Popendikyte V
    Dev Growth Differ; 2004 Dec; 46(6):545-54. PubMed ID: 15610144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Saccharomyces cerevisiae gene ECM11 is a positive effector of meiosis.
    Zavec AB; Lesnik U; Komel R; Comino A
    FEMS Microbiol Lett; 2004 Dec; 241(2):193-9. PubMed ID: 15598532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).
    Barozai MY; Bashir F; Muzaffar S; Afzal S; Behlil F; Khan M
    Gene; 2014 Oct; 550(1):74-80. PubMed ID: 25111117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of iodine on global gene expression in Saccharomyces cerevisiae.
    Kitagawa E; Akama K; Iwahashi H
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2285-93. PubMed ID: 16377885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae.
    Ando A; Tanaka F; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2006 Mar; 6(2):249-67. PubMed ID: 16487347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Y region at HML locus in a Saccharomyces cerevisiae strain isolated from a Sardinian wine.
    Pirino G; Zara S; Pinna G; Farris GA; Budroni M
    Antonie Van Leeuwenhoek; 2004 Jan; 85(1):29-36. PubMed ID: 15031661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.