BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16493632)

  • 1. Exhaled nitric oxide decreases upon acute exposure to high-altitude hypoxia.
    Brown DE; Beall CM; Strohl KP; Mills PS
    Am J Hum Biol; 2006; 18(2):196-202. PubMed ID: 16493632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ginkgo biloba decreases acute mountain sickness in people ascending to high altitude at Ollagüe (3696 m) in northern Chile.
    Moraga FA; Flores A; Serra J; Esnaola C; Barriento C
    Wilderness Environ Med; 2007; 18(4):251-7. PubMed ID: 18076292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraocular pressure and acclimatization to 4300 M altitude.
    Cymerman A; Rock PB; Muza SR; Lyons TP; Fulco CS; Mazzeo RS; Butterfield G; Moore LG
    Aviat Space Environ Med; 2000 Oct; 71(10):1045-50. PubMed ID: 11051312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaled nitric oxide and pulmonary artery pressures during graded ascent to high altitude.
    Donnelly J; Cowan DC; Yeoman DJ; Lucas SJ; Herbison GP; Thomas KN; Ainslie PN; Taylor DR
    Respir Physiol Neurobiol; 2011 Aug; 177(3):213-7. PubMed ID: 21515414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in plasma vascular endothelial growth factor during onset and recovery from acute mountain sickness.
    Dorward DA; Thompson AA; Baillie JK; MacDougall M; Hirani N
    Respir Med; 2007 Mar; 101(3):587-94. PubMed ID: 16890420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute mountain sickness in children and their parents after rapid ascent to 3500 m (Putre, Chile).
    Moraga FA; Pedreros CP; Rodríguez CE
    Wilderness Environ Med; 2008; 19(4):287-92. PubMed ID: 19099320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress in humans during and after 4 hours of hypoxia at a simulated altitude of 5500 m.
    Magalhães J; Ascensão A; Viscor G; Soares J; Oliveira J; Marques F; Duarte J
    Aviat Space Environ Med; 2004 Jan; 75(1):16-22. PubMed ID: 14736128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altitude adaptation through hematocrit changes.
    Zubieta-Calleja GR; Paulev PE; Zubieta-Calleja L; Zubieta-Castillo G
    J Physiol Pharmacol; 2007 Nov; 58 Suppl 5(Pt 2):811-8. PubMed ID: 18204195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteinyl leukotriene blockade does not prevent acute mountain sickness.
    Muza SR; Kaminsky D; Fulco CS; Banderet LE; Cymerman A
    Aviat Space Environ Med; 2004 May; 75(5):413-9. PubMed ID: 15152893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute mountain sickness is associated with sleep desaturation at high altitude.
    Burgess KR; Johnson P; Edwards N; Cooper J
    Respirology; 2004 Nov; 9(4):485-92. PubMed ID: 15612960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders.
    Hoit BD; Dalton ND; Erzurum SC; Laskowski D; Strohl KP; Beall CM
    J Appl Physiol (1985); 2005 Nov; 99(5):1796-801. PubMed ID: 16024527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular responses to orthostatic stress in healthy altitude dwellers, and altitude residents with chronic mountain sickness.
    Claydon VE; Norcliffe LJ; Moore JP; Rivera M; Leon-Velarde F; Appenzeller O; Hainsworth R
    Exp Physiol; 2005 Jan; 90(1):103-10. PubMed ID: 15466458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjunctival oxygen tension at high altitude.
    Mader TH; Friedl KE; Mohr LC; Bernhard WN
    Aviat Space Environ Med; 1987 Jan; 58(1):76-9. PubMed ID: 3814036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General introduction to altitude adaptation and mountain sickness.
    Bärtsch P; Saltin B
    Scand J Med Sci Sports; 2008 Aug; 18 Suppl 1():1-10. PubMed ID: 18665947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exhaled nitric oxide concentration upon acute exposure to moderate altitude.
    Caspersen C; Stang J; Thorsen E; Stensrud T
    Scand J Med Sci Sports; 2013 Mar; 23(2):e102-7. PubMed ID: 23157566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acute prolonged exposure to high-altitude hypoxia on exercise-induced breathlessness.
    Burki NK; McConnell JW; Ayub M; Liles RM
    Clin Sci (Lond); 1999 Apr; 96(4):327-33. PubMed ID: 10087238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute mountain sickness is not repeatable across two 12-hour normobaric hypoxia exposures.
    MacInnis MJ; Koch S; MacLeod KE; Carter EA; Jain R; Koehle MS; Rupert JL
    Wilderness Environ Med; 2014 Jun; 25(2):143-51. PubMed ID: 24631230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperventilatory capacity--a predictor of altitude sickness.
    Hayat A; Hussain MM; Aziz S; Siddiqui AH; Hussain T
    J Ayub Med Coll Abbottabad; 2006; 18(2):17-20. PubMed ID: 16977807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute mountain sickness is not altered by a high carbohydrate diet nor associated with elevated circulating cytokines.
    Swenson ER; MacDonald A; Vatheuer M; Maks C; Treadwell A; Allen R; Schoene RB
    Aviat Space Environ Med; 1997 Jun; 68(6):499-503. PubMed ID: 9184737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart rate response to hypoxic exercise: role of dopamine D2-receptors and effect of oxygen supplementation.
    Lundby C; Møller P; Kanstrup IL; Olsen NV
    Clin Sci (Lond); 2001 Oct; 101(4):377-83. PubMed ID: 11566075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.