These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 16493705)
21. Phosphoproteome analysis of Streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation. Manteca A; Ye J; Sánchez J; Jensen ON J Proteome Res; 2011 Dec; 10(12):5481-92. PubMed ID: 21999169 [TBL] [Abstract][Full Text] [Related]
22. Quantitative phosphoproteome analysis of Bacillus subtilis reveals novel substrates of the kinase PrkC and phosphatase PrpC. Ravikumar V; Shi L; Krug K; Derouiche A; Jers C; Cousin C; Kobir A; Mijakovic I; Macek B Mol Cell Proteomics; 2014 Aug; 13(8):1965-78. PubMed ID: 24390483 [TBL] [Abstract][Full Text] [Related]
23. Close proximity of phosphorylation sites to ligand in the phosphoproteome of the extreme thermophile Thermus thermophilus HB8. Takahata Y; Inoue M; Kim K; Iio Y; Miyamoto M; Masui R; Ishihama Y; Kuramitsu S Proteomics; 2012 May; 12(9):1414-30. PubMed ID: 22589190 [TBL] [Abstract][Full Text] [Related]
25. Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. Soufi B; Kumar C; Gnad F; Mann M; Mijakovic I; Macek B J Proteome Res; 2010 Jul; 9(7):3638-46. PubMed ID: 20509597 [TBL] [Abstract][Full Text] [Related]
26. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo. Chardonnet S; Le Marechal P; Cheval H; Le Caer JP; Decottignies P; Laprevote O; Laroche S; Davis S Eur J Neurosci; 2008 Jun; 27(11):2985-98. PubMed ID: 18588538 [TBL] [Abstract][Full Text] [Related]
27. Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in Vivo. Yuan J; Wang B; Sun Z; Bo X; Yuan X; He X; Zhao H; Du X; Wang F; Jiang Z; Zhang L; Jia L; Wang Y; Wei K; Wang J; Zhang X; Sun Y; Huang L; Zeng M J Proteome Res; 2008 Jan; 7(1):375-85. PubMed ID: 18027903 [TBL] [Abstract][Full Text] [Related]
28. Phosphoproteome profile of human liver Chang's cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS. Liu J; Cai Y; Wang J; Zhou Q; Yang B; Lu Z; Jiao L; Zhang D; Sui S; Jiang Y; Ying W; Qian X Electrophoresis; 2007 Dec; 28(23):4348-58. PubMed ID: 17987627 [TBL] [Abstract][Full Text] [Related]
29. Impact of phosphoproteomics on studies of bacterial physiology. Mijakovic I; Macek B FEMS Microbiol Rev; 2012 Jul; 36(4):877-92. PubMed ID: 22091997 [TBL] [Abstract][Full Text] [Related]
30. Mapping phosphoproteins in Neisseria meningitidis serogroup A. Bernardini G; Laschi M; Serchi T; Arena S; D'Ambrosio C; Braconi D; Scaloni A; Santucci A Proteomics; 2011 Apr; 11(7):1351-8. PubMed ID: 21365747 [TBL] [Abstract][Full Text] [Related]
31. Phosphoproteins analysis in plants: a proteomic approach. Laugesen S; Messinese E; Hem S; Pichereaux C; Grat S; Ranjeva R; Rossignol M; Bono JJ Phytochemistry; 2006 Oct; 67(20):2208-14. PubMed ID: 16962150 [TBL] [Abstract][Full Text] [Related]
32. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116 [TBL] [Abstract][Full Text] [Related]
33. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Sui S; Wang J; Yang B; Song L; Zhang J; Chen M; Liu J; Lu Z; Cai Y; Chen S; Bi W; Zhu Y; He F; Qian X Proteomics; 2008 May; 8(10):2024-34. PubMed ID: 18491316 [TBL] [Abstract][Full Text] [Related]
34. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible species Solanum chacoense Bitt. Vyetrogon K; Tebbji F; Olson DJ; Ross AR; Matton DP Proteomics; 2007 Jan; 7(2):232-47. PubMed ID: 17205606 [TBL] [Abstract][Full Text] [Related]
35. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928 [TBL] [Abstract][Full Text] [Related]
36. Monitoring of changes in the membrane proteome during stationary phase adaptation of Bacillus subtilis using in vivo labeling techniques. Dreisbach A; Otto A; Becher D; Hammer E; Teumer A; Gouw JW; Hecker M; Völker U Proteomics; 2008 May; 8(10):2062-76. PubMed ID: 18491319 [TBL] [Abstract][Full Text] [Related]
37. The universal stress protein, UspA, of Escherichia coli is phosphorylated in response to stasis. Freestone P; Nyström T; Trinei M; Norris V J Mol Biol; 1997 Dec; 274(3):318-24. PubMed ID: 9405142 [TBL] [Abstract][Full Text] [Related]
38. Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. Soares NC; Spät P; Méndez JA; Nakedi K; Aranda J; Bou G J Proteomics; 2014 May; 102():113-24. PubMed ID: 24657496 [TBL] [Abstract][Full Text] [Related]