These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 16493705)
41. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Kang TH; Bae KH; Yu MJ; Kim WK; Hwang HR; Jung H; Lee PY; Kang S; Yoon TS; Park SG; Ryu SE; Lee SC Proteomics; 2007 Aug; 7(15):2624-35. PubMed ID: 17610204 [TBL] [Abstract][Full Text] [Related]
42. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom. Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722 [TBL] [Abstract][Full Text] [Related]
43. Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle Balanus (=Amphibalanus) amphitrite. Zhang Y; Xu Y; Arellano SM; Xiao K; Qian PY J Proteome Res; 2010 Jun; 9(6):3146-57. PubMed ID: 20397722 [TBL] [Abstract][Full Text] [Related]
44. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Sharma K; D'Souza RC; Tyanova S; Schaab C; Wiśniewski JR; Cox J; Mann M Cell Rep; 2014 Sep; 8(5):1583-94. PubMed ID: 25159151 [TBL] [Abstract][Full Text] [Related]
45. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. Bonne Køhler J; Jers C; Senissar M; Shi L; Derouiche A; Mijakovic I FEBS Lett; 2020 Aug; 594(15):2339-2369. PubMed ID: 32337704 [TBL] [Abstract][Full Text] [Related]
46. Phosphoproteome profiling for cold temperature perception. Park S; Jang M J Cell Biochem; 2011 Feb; 112(2):633-42. PubMed ID: 21268085 [TBL] [Abstract][Full Text] [Related]
47. Global phosphoproteomic analysis of Daphnia pulex reveals evolutionary conservation of Ser/Thr/Tyr phosphorylation. Kwon OK; Sim J; Yun KN; Kim JY; Lee S J Proteome Res; 2014 Mar; 13(3):1327-35. PubMed ID: 24467309 [TBL] [Abstract][Full Text] [Related]
48. Approach to systematic analysis of serine/threonine phosphoproteome using Beta elimination and subsequent side effects: intramolecular linkage and/or racemisation. Tinette S; Feyereisen R; Robichon A J Cell Biochem; 2007 Mar; 100(4):875-82. PubMed ID: 17115411 [TBL] [Abstract][Full Text] [Related]
49. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Tam le T; Antelmann H; Eymann C; Albrecht D; Bernhardt J; Hecker M Proteomics; 2006 Aug; 6(16):4565-85. PubMed ID: 16847875 [TBL] [Abstract][Full Text] [Related]
50. Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC. Singh KD; Halbedel S; Görke B; Stülke J J Mol Microbiol Biotechnol; 2007; 13(1-3):165-71. PubMed ID: 17693724 [TBL] [Abstract][Full Text] [Related]
51. A survey of the Arabidopsis thaliana mitochondrial phosphoproteome. Ito J; Taylor NL; Castleden I; Weckwerth W; Millar AH; Heazlewood JL Proteomics; 2009 Sep; 9(17):4229-40. PubMed ID: 19688752 [TBL] [Abstract][Full Text] [Related]
52. The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. Schmidl SR; Gronau K; Pietack N; Hecker M; Becher D; Stülke J Mol Cell Proteomics; 2010 Jun; 9(6):1228-42. PubMed ID: 20097688 [TBL] [Abstract][Full Text] [Related]
53. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. Wolff S; Antelmann H; Albrecht D; Becher D; Bernhardt J; Bron S; Büttner K; van Dijl JM; Eymann C; Otto A; Tam le T; Hecker M J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):129-40. PubMed ID: 17055787 [TBL] [Abstract][Full Text] [Related]
54. Goals and Challenges in Bacterial Phosphoproteomics. Yagüe P; Gonzalez-Quiñonez N; Fernánez-García G; Alonso-Fernández S; Manteca A Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766156 [TBL] [Abstract][Full Text] [Related]
55. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum. Bai X; Ji Z Appl Microbiol Biotechnol; 2012 Jul; 95(1):201-11. PubMed ID: 22627760 [TBL] [Abstract][Full Text] [Related]
56. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Nagano K; Shinkawa T; Mutoh H; Kondoh O; Morimoto S; Inomata N; Ashihara M; Ishii N; Aoki Y; Haramura M Proteomics; 2009 May; 9(10):2861-74. PubMed ID: 19415658 [TBL] [Abstract][Full Text] [Related]
57. Identification of phosphoproteins associated with maintenance of transformed state in temperature-sensitive Rous sarcoma-virus infected cells by proteomic analysis. Yamaoka K; Imajoh-Ohmi S; Fukuda H; Akita Y; Kurosawa K; Yamamoto Y; Sanai Y Biochem Biophys Res Commun; 2006 Jul; 345(3):1240-6. PubMed ID: 16716253 [TBL] [Abstract][Full Text] [Related]
58. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. Lee DG; Kwon J; Eom CY; Kang YM; Roh SW; Lee KB; Choi JS J Microbiol; 2015 Apr; 53(4):279-87. PubMed ID: 25845541 [TBL] [Abstract][Full Text] [Related]
59. 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining: a successful approach for the identification of kinase/phosphatase targets. Orsatti L; Forte E; Tomei L; Caterino M; Pessi A; Talamo F Electrophoresis; 2009 Jul; 30(14):2469-76. PubMed ID: 19639567 [TBL] [Abstract][Full Text] [Related]
60. Rapid alteration of the phosphoproteome in the moss Physcomitrella patens after cytokinin treatment. Heintz D; Erxleben A; High AA; Wurtz V; Reski R; Van Dorsselaer A; Sarnighausen E J Proteome Res; 2006 Sep; 5(9):2283-93. PubMed ID: 16944940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]