These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 164941)
1. Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. Prince RC; Baccarini-Melandri A; Hauska GA; Melandri BA; Crofts AR Biochim Biophys Acta; 1975 May; 387(2):212-27. PubMed ID: 164941 [TBL] [Abstract][Full Text] [Related]
2. Succinate dehydrogenase in Rhodopseudomonas sphaeroides: subunit composition and immunocross-reactivity with other related bacteria. Barassi CA; Kranz RG; Gennis RB J Bacteriol; 1985 Aug; 163(2):778-82. PubMed ID: 3874866 [TBL] [Abstract][Full Text] [Related]
3. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250 [No Abstract] [Full Text] [Related]
4. pH dependence of the oxidation-reduction potential of cytochrome c2. Pettigrew GW; Meyer TE; Bartsch RG; Kamen MD Biochim Biophys Acta; 1976 May; 430(2):197-208. PubMed ID: 6058 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas spheroides and Rhodospirillum rubrum. Dutton PL; Jackson JB Eur J Biochem; 1972 Nov; 30(3):495-510. PubMed ID: 4344828 [No Abstract] [Full Text] [Related]
6. Resolved difference spectra of redox centers involved in photosynthetic electron flow in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Bowyer JR; Meinhardt SW; Tierney GV; Crofts AR Biochim Biophys Acta; 1981 Mar; 635(1):167-86. PubMed ID: 6260162 [TBL] [Abstract][Full Text] [Related]
7. Energy transduction in photosynthetic bacteria. The nature of cytochrome C oxidase in the respiratory chain of Rhodopseudomonas capsulata. Zannoni D; Baccarini-Melandri A; Malandri BA FEBS Lett; 1974 Nov; 48(1):152-5. PubMed ID: 4372102 [No Abstract] [Full Text] [Related]
8. [Nitrogenase and hydrogenase activities of the non-sulfur purple bacteria, Rhodopseudomonas spheroides and Rhodopseudomonas capsulata]. Serebriakova LT; Teslia EA; Gogotov IN; Kondrat'eva EN Mikrobiologiia; 1980; 49(3):401-7. PubMed ID: 6995815 [TBL] [Abstract][Full Text] [Related]
9. Diffusion-potential-induced oxidation and reduction of cytochromes in chromatophores from Rhodopseudomonas sphaeroides. Matsuura K; Nishimura M J Biochem; 1978 Sep; 84(3):539-46. PubMed ID: 214426 [TBL] [Abstract][Full Text] [Related]
10. On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Bowyer JR; Crofts AR Biochim Biophys Acta; 1981 Jul; 636(2):218-33. PubMed ID: 6269602 [No Abstract] [Full Text] [Related]
11. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction. Prince RC; Dutton PL Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671 [TBL] [Abstract][Full Text] [Related]
12. The interrelation of the two c-type cytochromes in Rhodopseudomonas sphaeroides photosynthesis. Wood PM Biochem J; 1980 Nov; 192(2):761-4. PubMed ID: 6263260 [TBL] [Abstract][Full Text] [Related]
13. The location and function of cytochrome c2 in Rhodopseudomonas capsulate membranes. Hochman A; Fridberg I; Carmeli C Eur J Biochem; 1975 Oct; 58(1):65-72. PubMed ID: 241634 [TBL] [Abstract][Full Text] [Related]
14. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Zannoni D; Melandri BA; Baccarini-Melandri A Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB. Snozzi M; Crofts AR Biochim Biophys Acta; 1985 Sep; 809(2):260-70. PubMed ID: 2994721 [TBL] [Abstract][Full Text] [Related]
16. Energy tranduction in photosynthetic bacteria. XI. Further resolution of cytochromes of b type and the nature of the co-sensitive oxidase present in the respiratory chain of Rhodopseudomonas capsulata. Zannoni D; Melandri BA; Baccarini-Melandri A Biochim Biophys Acta; 1976 Dec; 449(3):386-400. PubMed ID: 11815 [TBL] [Abstract][Full Text] [Related]
17. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133 [TBL] [Abstract][Full Text] [Related]
18. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600 [TBL] [Abstract][Full Text] [Related]
19. The pH dependence of the oxidation-reduction midpoint potential of cytochromes c2 in vivo. Prince RC; Dutton PL Biochim Biophys Acta; 1977 Mar; 459(3):573-7. PubMed ID: 14684 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer proteins of the purple phototrophic bacterium, Rhodopseudomonas rutila. Meyer TE; Fitch J; Van Driessche G; Van Beeumen J; Fischer U; Bartsch RG; Cusanovich MA Arch Biochem Biophys; 1991 May; 286(2):389-93. PubMed ID: 1654788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]