These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 16494234)
1. Effect of copper on the photochemical efficiency, growth, and chlorophyll a biomass of natural phytoplankton assemblages. Pérez P; Estévez-Blanco P; Beiras R; Fernández E Environ Toxicol Chem; 2006 Jan; 25(1):137-43. PubMed ID: 16494234 [TBL] [Abstract][Full Text] [Related]
2. Monitoring copper toxicity in natural phytoplankton assemblages: application of Fast Repetition Rate fluorometry. Pérez P; Beiras R; Fernández E Ecotoxicol Environ Saf; 2010 Sep; 73(6):1292-303. PubMed ID: 20579733 [TBL] [Abstract][Full Text] [Related]
3. Higher biomolecules yield in phytoplankton under copper exposure. Silva JC; Echeveste P; Lombardi AT Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408 [TBL] [Abstract][Full Text] [Related]
4. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence. Pérez P; Fernández E; Beiras R Ecotoxicol Environ Saf; 2010 Mar; 73(3):254-61. PubMed ID: 20060589 [TBL] [Abstract][Full Text] [Related]
5. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton. Echeveste P; Silva JC; Lombardi AT Ecotoxicol Environ Saf; 2017 Sep; 143():228-235. PubMed ID: 28551580 [TBL] [Abstract][Full Text] [Related]
6. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation. Marwood CA; Smith RE; Solomon KR; Charlton MN; Greenberg BM Ecotoxicol Environ Saf; 1999 Nov; 44(3):322-7. PubMed ID: 10581126 [TBL] [Abstract][Full Text] [Related]
7. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content. West LJ; Li K; Greenberg BM; Mierle G; Smith RE Aquat Toxicol; 2003 Jun; 64(1):39-52. PubMed ID: 12763674 [TBL] [Abstract][Full Text] [Related]
8. Creosote toxicity to photosynthesis and plant growth in aquatic microcosms. Marwood CA; Bestari KT; Gensemer RW; Solomon KR; Greenberg BM Environ Toxicol Chem; 2003 May; 22(5):1075-85. PubMed ID: 12729217 [TBL] [Abstract][Full Text] [Related]
9. Physiological responses of Chlorella sorokiniana to copper nanoparticles. Barreto DM; Tonietto AE; Amaral CDB; Pulgrossi RC; Polpo A; Nóbrega JA; Lombardi AT Environ Toxicol Chem; 2019 Feb; 38(2):387-395. PubMed ID: 30548341 [TBL] [Abstract][Full Text] [Related]
10. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chakraborty P; Raghunadh Babu PV; Acharyya T; Bandyopadhyay D Chemosphere; 2010 Jul; 80(5):548-53. PubMed ID: 20493512 [TBL] [Abstract][Full Text] [Related]
11. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Han T; Kang SH; Park JS; Lee HK; Brown MT Aquat Toxicol; 2008 Jan; 86(2):176-84. PubMed ID: 18083244 [TBL] [Abstract][Full Text] [Related]
12. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer. Goldman EA; Smith EM; Richardson TL Water Res; 2013 Mar; 47(4):1616-30. PubMed ID: 23340016 [TBL] [Abstract][Full Text] [Related]
13. Growth and photosynthetic responses to copper in wild grapevine. Cambrollé J; García JL; Ocete R; Figueroa ME; Cantos M Chemosphere; 2013 Sep; 93(2):294-301. PubMed ID: 23746388 [TBL] [Abstract][Full Text] [Related]
14. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Jakob T; Schreiber U; Kirchesch V; Langner U; Wilhelm C Photosynth Res; 2005; 83(3):343-61. PubMed ID: 16143924 [TBL] [Abstract][Full Text] [Related]
15. The growth behavior of three marine phytoplankton species in the presence of commercial cypermethrin. Wang ZH; Yang YF; Yue WJ; Kang W; Liang WJ; Li WJ Ecotoxicol Environ Saf; 2010 Sep; 73(6):1408-14. PubMed ID: 20117836 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity, variability, and recovery of functional and structural endpoints of an aquatic community exposed to herbicides. Knauer K; Hommen U Ecotoxicol Environ Saf; 2012 Apr; 78():178-83. PubMed ID: 22153306 [TBL] [Abstract][Full Text] [Related]
17. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition. Biswas H; Bandyopadhyay D Mar Environ Res; 2017 Oct; 131():19-31. PubMed ID: 28941642 [TBL] [Abstract][Full Text] [Related]
18. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Yang L; Li H; Zhang Y; Jiao N Environ Int; 2019 Dec; 133(Pt A):105175. PubMed ID: 31629173 [TBL] [Abstract][Full Text] [Related]