These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16494315)

  • 1. Silica nanoparticle formation in the TPAOH-TEOS-H2O system: a population balance model.
    Provis JL; Vlachos DG
    J Phys Chem B; 2006 Feb; 110(7):3098-108. PubMed ID: 16494315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling spontaneous formation of precursor nanoparticles in clear-solution zeolite synthesis.
    Jorge M; Auerbach SM; Monson PA
    J Am Chem Soc; 2005 Oct; 127(41):14388-400. PubMed ID: 16218634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicalite-1 growth from clear solution: Effect of alcohol identity and content on growth kinetics.
    Cheng CH; Shantz DF
    J Phys Chem B; 2005 Oct; 109(41):19116-25. PubMed ID: 16853465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS.
    Follens LR; Aerts A; Haouas M; Caremans TP; Loppinet B; Goderis B; Vermant J; Taulelle F; Martens JA; Kirschhock CE
    Phys Chem Chem Phys; 2008 Sep; 10(36):5574-83. PubMed ID: 18956092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle formation and zeolite growth in TEOS/Organocation/water solutions.
    Cheng CH; Shantz DF
    J Phys Chem B; 2005 Apr; 109(15):7266-74. PubMed ID: 16851831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations.
    Rimer JD; Lobo RF; Vlachos DG
    Langmuir; 2005 Sep; 21(19):8960-71. PubMed ID: 16142985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and 29Si NMR spectroscopy.
    Aerts A; Haouas M; Caremans TP; Follens LR; van Erp TS; Taulelle F; Vermant J; Martens JA; Kirschhock CE
    Chemistry; 2010 Mar; 16(9):2764-74. PubMed ID: 20077442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregative growth of silicalite-1.
    Kumar S; Davis TM; Ramanan H; Penn RL; Tsapatsis M
    J Phys Chem B; 2007 Apr; 111(13):3398-403. PubMed ID: 17388482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles.
    Narayanan R; El-Sayed MA
    J Am Chem Soc; 2003 Jul; 125(27):8340-7. PubMed ID: 12837106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicalite-1 growth from clear solution: Effect of the structure-directing agent on growth kinetics.
    Cheng CH; Shantz DF
    J Phys Chem B; 2005 Jul; 109(29):13912-20. PubMed ID: 16852746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth Kinetics of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: A Reverse Micellar Pseudophase Reaction Model.
    Osseo-Asare K; Arriagada FJ
    J Colloid Interface Sci; 1999 Oct; 218(1):68-76. PubMed ID: 10489280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PFG NMR studies of lysine-silica solutions.
    Li X; Shantz DF
    J Colloid Interface Sci; 2012 Oct; 383(1):19-27. PubMed ID: 22789802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin.
    Liu Y; Tong Z; Prud'homme RK
    Pest Manag Sci; 2008 Aug; 64(8):808-12. PubMed ID: 18366056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica nanoparticle crystals and ordered coatings using lys-sil and a novel coating device.
    Snyder MA; Lee JA; Davis TM; Scriven LE; Tsapatsis M
    Langmuir; 2007 Sep; 23(20):9924-8. PubMed ID: 17625899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening.
    Tang J; Photopoulos P; Tserepi A; Tsoukalas D
    Nanotechnology; 2011 Jun; 22(23):235306. PubMed ID: 21483049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.