BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16494413)

  • 1. Inverse temperature transition of a biomimetic elastin model: reactive flux analysis of folding/unfolding and its coupling to solvent dielectric relaxation.
    Baer M; Schreiner E; Kohlmeyer A; Rousseau R; Marx D
    J Phys Chem B; 2006 Mar; 110(8):3576-87. PubMed ID: 16494413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent conformational transitions and hydrogen-bond dynamics of the elastin-like octapeptide GVG(VPGVG): a molecular-dynamics study.
    Rousseau R; Schreiner E; Kohlmeyer A; Marx D
    Biophys J; 2004 Mar; 86(3):1393-407. PubMed ID: 14990469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the temperature- and pressure-induced inverse and reentrant transition of the minimum elastin-like polypeptide GVG(VPGVG) by DSC, PPC, CD, and FT-IR spectroscopy.
    Nicolini C; Ravindra R; Ludolph B; Winter R
    Biophys J; 2004 Mar; 86(3):1385-92. PubMed ID: 14990468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational dynamics of minimal elastin-like polypeptides: the role of proline revealed by molecular dynamics and nuclear magnetic resonance.
    Glaves R; Baer M; Schreiner E; Stoll R; Marx D
    Chemphyschem; 2008 Dec; 9(18):2759-65. PubMed ID: 18972488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding and unfolding of an elastinlike oligopeptide: "inverse temperature transition," reentrance, and hydrogen-bond dynamics.
    Schreiner E; Nicolini C; Ludolph B; Ravindra R; Otte N; Kohlmeyer A; Rousseau R; Winter R; Marx D
    Phys Rev Lett; 2004 Apr; 92(14):148101. PubMed ID: 15089575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-induced conformational transition of a model elastin-like peptide GVG(VPGVG)(3) in water.
    Krukau A; Brovchenko I; Geiger A
    Biomacromolecules; 2007 Jul; 8(7):2196-202. PubMed ID: 17567170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis for the inverse temperature transition of elastin.
    Li B; Alonso DO; Daggett V
    J Mol Biol; 2001 Jan; 305(3):581-92. PubMed ID: 11152614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular dynamics study of the correlations between solvent-accessible surface, molecular volume, and folding state.
    Floriano WB; Domont GB; Nascimento MA
    J Phys Chem B; 2007 Feb; 111(7):1893-9. PubMed ID: 17261064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; García AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study.
    Nguyen PH; Stock G; Mittag E; Hu CK; Li MS
    Proteins; 2005 Dec; 61(4):795-808. PubMed ID: 16240446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular basis of the temperature- and pH-induced conformational transitions in elastin-based peptides.
    Li B; Daggett V
    Biopolymers; 2003 Jan; 68(1):121-9. PubMed ID: 12579584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field?
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.
    Paschek D; Nymeyer H; García AE
    J Struct Biol; 2007 Mar; 157(3):524-33. PubMed ID: 17293125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobicity-induced pK shifts in elastin protein-based polymers.
    Urry DW; Peng SQ; Parker TM
    Biopolymers; 1992 Apr; 32(4):373-9. PubMed ID: 1623133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study.
    Chipot C; Maigret B; Pohorille A
    Proteins; 1999 Sep; 36(4):383-99. PubMed ID: 10450080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of the free energy landscape of the src-SH3 protein domain.
    Guo W; Lampoudi S; Shea JE
    Proteins; 2004 May; 55(2):395-406. PubMed ID: 15048830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models.
    Yeh IC; Lee MS; Olson MA
    J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.