These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16494458)

  • 1. Crown ethers as building blocks for carbohydrate receptors.
    Mazik M; Kuschel M; Sicking W
    Org Lett; 2006 Mar; 8(5):855-8. PubMed ID: 16494458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media.
    Mazik M; Cavga H
    J Org Chem; 2006 Apr; 71(8):2957-63. PubMed ID: 16599588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High alpha/beta-anomer selectivity in molecular recognition of carbohydrates by artificial receptors.
    Mazik M; Radunz W; Sicking W
    Org Lett; 2002 Dec; 4(26):4579-82. PubMed ID: 12489934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein-carbohydrate complexes.
    Mazik M; Cavga H; Jones PG
    J Am Chem Soc; 2005 Jun; 127(25):9045-52. PubMed ID: 15969582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition of carbohydrates with acyclic pyridine-based receptors.
    Mazik M; Radunz W; Boese R
    J Org Chem; 2004 Oct; 69(22):7448-62. PubMed ID: 15497969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly effective acyclic carbohydrate receptors consisting of aminopyridine, imidazole, and indole recognition units.
    Mazik M; Kuschel M
    Chemistry; 2008; 14(8):2405-19. PubMed ID: 18205164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isopropylamino and isobutylamino groups as recognition sites for carbohydrates: acyclic receptors with enhanced binding affinity toward β-galactosides.
    Mazik M; Sonnenberg C
    J Org Chem; 2010 Oct; 75(19):6416-23. PubMed ID: 20828138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition properties of an acyclic biphenyl-based receptor toward carbohydrates.
    Mazik M; König A
    J Org Chem; 2006 Sep; 71(20):7854-7. PubMed ID: 16995697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II).
    Xie J; Ménand M; Maisonneuve S; Métivier R
    J Org Chem; 2007 Aug; 72(16):5980-5. PubMed ID: 17628104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly effective recognition of carbohydrates by phenanthroline-based receptors: alpha- versus beta-anomer binding preference.
    Mazik M; Hartmann A; Jones PG
    Chemistry; 2009 Sep; 15(36):9147-59. PubMed ID: 19650090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenanthroline unit as a building block for carbohydrate receptors.
    Mazik M; Hartmann A
    J Org Chem; 2008 Oct; 73(19):7444-50. PubMed ID: 18576685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gondola-shaped luminescent tetrarhenium metallacycles with crown-ether-like multiple recognition sites.
    Sathiyendiran M; Liao RT; Thanasekaran P; Luo TT; Venkataramanan NS; Lee GH; Peng SM; Lu KL
    Inorg Chem; 2006 Dec; 45(25):10052-4. PubMed ID: 17140209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate-based aza-macrocycles by Richman-Atkins cyclization of glucopyranose precursors.
    Rathjens A; Thiem J
    Carbohydr Res; 2017 Jan; 438():18-25. PubMed ID: 27960096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo synthesis of sugar-aza-crown ethers via a domino Staudinger aza-Wittig reaction.
    Ménand M; Blais JC; Valéry JM; Xie J
    J Org Chem; 2006 Apr; 71(8):3295-8. PubMed ID: 16599634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal and molecular structures of ionophore-siderophore host-guest supramolecular assemblies relevant to molecular recognition.
    Dhungana S; White PS; Crumbliss AL
    J Am Chem Soc; 2003 Dec; 125(48):14760-7. PubMed ID: 14640651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental study on the molecular recognition of adrenaline by supramolecular complexation with crown ethers.
    Liu T; Han L; Yu Z; Zhang D; Liu C
    Comput Biol Med; 2012 Apr; 42(4):480-4. PubMed ID: 22277594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation.
    D'Souza F; Chitta R; Gadde S; Zandler ME; Sandanayaka AS; Araki Y; Ito O
    Chem Commun (Camb); 2005 Mar; (10):1279-81. PubMed ID: 15742051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sugar-aza-crown ether-based fluorescent sensor for Hg(2+) and Cu(2+).
    Hsieh YC; Chir JL; Wu HH; Chang PS; Wu AT
    Carbohydr Res; 2009 Nov; 344(16):2236-9. PubMed ID: 19765693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion recognition by a macrobicycle based on a tetraoxadiaza macrocycle and an isophthalamide head unit.
    Bernier N; Carvalho S; Li F; Delgado R; Félix V
    J Org Chem; 2009 Jul; 74(13):4819-27. PubMed ID: 19449844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic studies of the interaction between crown ethers and organic nitriles.
    Mosier-Boss PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(3):527-34. PubMed ID: 15582822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.