BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16494726)

  • 1. Real-time estimates in early detection of SARS.
    Cauchemez S; Boelle PY; Donnelly CA; Ferguson NM; Thomas G; Leung GM; Hedley AJ; Anderson RM; Valleron AJ
    Emerg Infect Dis; 2006 Jan; 12(1):110-3. PubMed ID: 16494726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting versus projection models in epidemiology: the case of the SARS epidemics.
    Massad E; Burattini MN; Lopez LF; Coutinho FA
    Med Hypotheses; 2005; 65(1):17-22. PubMed ID: 15893110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission dynamics and control of severe acute respiratory syndrome.
    Lipsitch M; Cohen T; Cooper B; Robins JM; Ma S; James L; Gopalakrishna G; Chew SK; Tan CC; Samore MH; Fisman D; Murray M
    Science; 2003 Jun; 300(5627):1966-70. PubMed ID: 12766207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism.
    Chowell G; Fenimore PW; Castillo-Garsow MA; Castillo-Chavez C
    J Theor Biol; 2003 Sep; 224(1):1-8. PubMed ID: 12900200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong.
    Lai PC; Wong CM; Hedley AJ; Lo SV; Leung PY; Kong J; Leung GM
    Environ Health Perspect; 2004 Nov; 112(15):1550-6. PubMed ID: 15531441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SARS incubation and quarantine times: when is an exposed individual known to be disease free?
    Farewell VT; Herzberg AM; James KW; Ho LM; Leung GM
    Stat Med; 2005 Nov; 24(22):3431-45. PubMed ID: 16237660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test for constant fatality rate of an emerging epidemic: with applications to severe acute respiratory syndrome in Hong Kong and Beijing.
    Lam KF; Deshpande JV; Lau EHY; Naik-Nimbalkar UV; Yip PSF; Xu Y
    Biometrics; 2008 Sep; 64(3):869-876. PubMed ID: 18047531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the SARS outbreak in Beijing with limited data.
    Wang W; Ruan S
    J Theor Biol; 2004 Apr; 227(3):369-79. PubMed ID: 15019504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Approach to Nowcasting the Time-varying Reproduction Number.
    Sumalinab B; Gressani O; Hens N; Faes C
    Epidemiology; 2024 Jul; 35(4):512-516. PubMed ID: 38788149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe acute respiratory syndrome: capture-recapture method should be used to count how many cases of SARS really exist.
    Lange JH; LaPorte RE
    BMJ; 2003 Jun; 326(7403):1396. PubMed ID: 12816840
    [No Abstract]   [Full Text] [Related]  

  • 11. A framework for capturing the interactions between laypersons' understanding of disease, information gathering behaviors, and actions taken during an epidemic.
    Slaughter L; Keselman A; Kushniruk A; Patel VL
    J Biomed Inform; 2005 Aug; 38(4):298-313. PubMed ID: 16084472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of local time-varying reproduction numbers in noisy surveillance data.
    Li W; Bulekova K; Gregor B; White LF; Kolaczyk ED
    Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2233):20210303. PubMed ID: 35965456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian approach for detecting a disease that is not being modeled.
    Aronis JM; Ferraro JP; Gesteland PH; Tsui F; Ye Y; Wagner MM; Cooper GF
    PLoS One; 2020; 15(2):e0229658. PubMed ID: 32109254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between variants and SARS-Co-V2 epidemic, from Wuhan to XBB.1.16.: Natural selection?
    Kleebayoon A; Wiwanitkit V
    Eur J Intern Med; 2023 Jul; 113():110. PubMed ID: 37169631
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel indicator in epidemic monitoring through a case study of Ebola in West Africa (2014-2016).
    Kwak M; Sun X; Wi Y; Nah K; Kim Y; Jin H
    Sci Rep; 2024 May; 14(1):12147. PubMed ID: 38802461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the reproduction number and transmission heterogeneity from the size distribution of clusters of identical pathogen sequences.
    Tran-Kiem C; Bedford T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2305299121. PubMed ID: 38568971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian inference method to estimate transmission trees with multiple introductions; applied to SARS-CoV-2 in Dutch mink farms.
    Van der Roest BR; Bootsma MCJ; Fischer EAJ; Klinkenberg D; Kretzschmar MEE
    PLoS Comput Biol; 2023 Nov; 19(11):e1010928. PubMed ID: 38011266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating effective reproduction number revisited.
    Koyama S
    Infect Dis Model; 2023 Dec; 8(4):1063-1078. PubMed ID: 37701756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying individual-level heterogeneity in infectiousness and susceptibility through household studies.
    Anderson TL; Nande A; Merenstein C; Raynor B; Oommen A; Kelly BJ; Levy MZ; Hill AL
    Epidemics; 2023 Sep; 44():100710. PubMed ID: 37556994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time estimation and forecasting of COVID-19 cases and hospitalizations in Wisconsin HERC regions for public health decision making processes.
    Aravamuthan S; Mandujano Reyes JF; Yandell BS; Döpfer D
    BMC Public Health; 2023 Feb; 23(1):359. PubMed ID: 36803324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.