These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16495030)

  • 1. A simple and rapid assay for heparanase activity using homogeneous time-resolved fluorescence.
    Enomoto K; Okamoto H; Numata Y; Takemoto H
    J Pharm Biomed Anal; 2006 Jun; 41(3):912-7. PubMed ID: 16495030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiolabeled heparan sulfate immobilized on microplate as substrate for the detection of heparanase activity.
    Nardella C; Steinkühler C
    Anal Biochem; 2004 Sep; 332(2):368-75. PubMed ID: 15325306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of high-throughput spermidine synthase activity assay using homogeneous time-resolved fluorescence.
    Enomoto K; Nagasaki T; Yamauchi A; Onoda J; Sakai K; Yoshida T; Maekawa K; Kinoshita Y; Nishino I; Kikuoka S; Fukunaga T; Kawamoto K; Numata Y; Takemoto H; Nagata K
    Anal Biochem; 2006 Apr; 351(2):229-40. PubMed ID: 16472757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Europium cryptate-tethered ribonucleotide for the labeling of RNA and its detection by time-resolved amplification of cryptate emission.
    Alpha-Bazin B; Bazin H; Boissy L; Mathis G
    Anal Biochem; 2000 Nov; 286(1):17-25. PubMed ID: 11038268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput methods for measuring heparanase activity and screening potential antimetastatic and anti-inflammatory agents.
    Huang KS; Holmgren J; Reik L; Lucas-McGady D; Roberts J; Liu CM; Levin W
    Anal Biochem; 2004 Oct; 333(2):389-98. PubMed ID: 15450817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparanase expression in B16 melanoma cells and peripheral blood neutrophils before and after extravasation detected by novel anti-mouse heparanase monoclonal antibodies.
    Komatsu N; Waki M; Sue M; Tokuda C; Kasaoka T; Nakajima M; Higashi N; Irimura T
    J Immunol Methods; 2008 Feb; 331(1-2):82-93. PubMed ID: 18162185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafiltration-based assay for heparanase activity.
    Tsuchida S; Podyma-Inoue KA; Yanagishita M
    Anal Biochem; 2004 Aug; 331(1):147-52. PubMed ID: 15246007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparanases and tumor metastasis.
    Nakajima M; Irimura T; Nicolson GL
    J Cell Biochem; 1988 Feb; 36(2):157-67. PubMed ID: 3281960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific degradation of subendothelial matrix proteoglycans by brain-metastatic melanoma and brain endothelial cell heparanases.
    Marchetti D
    J Cell Physiol; 1997 Sep; 172(3):334-42. PubMed ID: 9284953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection on intact cells.
    Lundin K; Blomberg K; Nordström T; Lindqvist C
    Anal Biochem; 2001 Dec; 299(1):92-7. PubMed ID: 11726189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells.
    Nadir Y; Brenner B; Gingis-Velitski S; Levy-Adam F; Ilan N; Zcharia E; Nadir E; Vlodavsky I
    Thromb Haemost; 2008 Jan; 99(1):133-41. PubMed ID: 18217145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase.
    Marchetti D; Li J; Shen R
    Cancer Res; 2000 Sep; 60(17):4767-70. PubMed ID: 10987284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma.
    Ricoveri W; Cappelletti R
    Cancer Res; 1986 Aug; 46(8):3855-61. PubMed ID: 3731061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human prostate carcinoma cells produce extracellular heparanase.
    Kosir MA; Quinn CC; Zukowski KL; Grignon DJ; Ledbetter S
    J Surg Res; 1997 Jan; 67(1):98-105. PubMed ID: 9070190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of new methods for determining the heparanase enzymatic activity.
    Melo CM; Tersariol IL; Nader HB; Pinhal MA; Lima MA
    Carbohydr Res; 2015 Aug; 412():66-70. PubMed ID: 26062789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase.
    Bisio A; Mantegazza A; Urso E; Naggi A; Torri G; Viskov C; Casu B
    Semin Thromb Hemost; 2007 Jul; 33(5):488-95. PubMed ID: 17629845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A separation-free assay for the detection of mutations: combination of homogeneous time-resolved fluorescence and minisequencing.
    Lopez-Crapez E; Bazin H; Chevalier J; Trinquet E; Grenier J; Mathis G
    Hum Mutat; 2005 May; 25(5):468-75. PubMed ID: 15832307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of simple heparanase substrates.
    Pearson AG; Kiefel MJ; Ferro V; von Itzstein M
    Org Biomol Chem; 2011 Jun; 9(12):4614-25. PubMed ID: 21505696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of both colorimetric and fluorescence heparinase activity assays using fondaparinux as substrate.
    Schiemann S; Lühn S; Alban S
    Anal Biochem; 2012 Aug; 427(1):82-90. PubMed ID: 22579846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous proximity tyrosine kinase assays: scintillation proximity assay versus homogeneous time-resolved fluorescence.
    Park YW; Cummings RT; Wu L; Zheng S; Cameron PM; Woods A; Zaller DM; Marcy AI; Hermes JD
    Anal Biochem; 1999 Apr; 269(1):94-104. PubMed ID: 10094779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.