BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16495431)

  • 1. Waking-sleep modulation of paroxysmal activities induced by partial cortical deafferentation.
    Nita DA; Cissé Y; Timofeev I; Steriade M
    Cereb Cortex; 2007 Feb; 17(2):272-83. PubMed ID: 16495431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased propensity to seizures after chronic cortical deafferentation in vivo.
    Nita DA; Cissé Y; Timofeev I; Steriade M
    J Neurophysiol; 2006 Feb; 95(2):902-13. PubMed ID: 16236784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-dependent slow outlasting activities following neocortical kindling in cats.
    Nita DA; Cissé Y; Timofeev I
    Exp Neurol; 2008 Jun; 211(2):456-68. PubMed ID: 18420200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical wave amplitude and eye movement direction are correlated in REM sleep but not in waking.
    Monaco AP; Baghdoyan HA; Nelson JP; Hobson JA
    Arch Ital Biol; 1984 Sep; 122(3):213-23. PubMed ID: 6517651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dynamics of sleep and the waking state after labyrinthine deafferentation].
    Doneshka P
    Eksp Med Morfol; 1976; 15(2):70-4. PubMed ID: 179775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency oscillations of cortical oxidative metabolism in waking and sleep.
    Vern BA; Schuette WH; Leheta B; Juel VC; Radulovacki M
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):215-26. PubMed ID: 2830291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal coupling of rapid eye movements and cerebral activities during REM sleep.
    Ogawa K; Abe T; Nittono H; Yamazaki K; Hori T
    Clin Neurophysiol; 2009 Jan; 120(1):18-23. PubMed ID: 19062337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic strength modulation after cortical trauma: a role in epileptogenesis.
    Avramescu S; Timofeev I
    J Neurosci; 2008 Jul; 28(27):6760-72. PubMed ID: 18596152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7-12 Hz cortical oscillations: behavioral context and dynamics of prefrontal neuronal ensembles.
    Sakata S; Yamamori T; Sakurai Y
    Neuroscience; 2005; 134(4):1099-111. PubMed ID: 16019153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockage of vibrissal afferents: III. Electrocorticographic effects.
    Prchal A; Décima EE
    Arch Ital Biol; 2004 Feb; 142(1):35-45. PubMed ID: 15143622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial cortical deafferentation promotes development of paroxysmal activity.
    Topolnik L; Steriade M; Timofeev I
    Cereb Cortex; 2003 Aug; 13(8):883-93. PubMed ID: 12853375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast modulation of prefrontal cortex activity by basal forebrain noncholinergic neuronal ensembles.
    Lin SC; Gervasoni D; Nicolelis MA
    J Neurophysiol; 2006 Dec; 96(6):3209-19. PubMed ID: 16928796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of trihexyphenydil, the structural analog of phencyclidine, on neocortical and hippocampal electrical activity in sleep-waking cycle.
    Nachkebia N; Mchedlidze O; Chkhartishvili E; Dzadzamia Sh; Oniani T
    Georgian Med News; 2009 Apr; (169):81-7. PubMed ID: 19430052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence of sleep rhythms and their chronology in corticothalamic networks.
    Steriade M; Amzica F
    Sleep Res Online; 1998; 1(1):1-10. PubMed ID: 11382851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies.
    Schelter B; Winterhalder M; Maiwald T; Brandt A; Schad A; Timmer J; Schulze-Bonhage A
    Epilepsia; 2006 Dec; 47(12):2058-70. PubMed ID: 17201704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predator-induced plasticity in sleep architecture in wild-caught Norway rats (Rattus norvegicus).
    Lesku JA; Bark RJ; Martinez-Gonzalez D; Rattenborg NC; Amlaner CJ; Lima SL
    Behav Brain Res; 2008 Jun; 189(2):298-305. PubMed ID: 18313152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.