These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Li JX; Fang X; Zhao Q; Ruan JX; Yang CQ; Wang LJ; Miller DJ; Faraldos JA; Allemann RK; Chen XY; Zhang P Biochem J; 2013 May; 451(3):417-26. PubMed ID: 23438177 [TBL] [Abstract][Full Text] [Related]
6. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases delta-selinene synthase and gamma-humulene synthase. Little DB; Croteau RB Arch Biochem Biophys; 2002 Jun; 402(1):120-35. PubMed ID: 12051690 [TBL] [Abstract][Full Text] [Related]
7. A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor. Garms S; Chen F; Boland W; Gershenzon J; Köllner TG Phytochemistry; 2012 Mar; 75():6-13. PubMed ID: 22226036 [TBL] [Abstract][Full Text] [Related]
9. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Kampranis SC; Ioannidis D; Purvis A; Mahrez W; Ninga E; Katerelos NA; Anssour S; Dunwell JM; Degenhardt J; Makris AM; Goodenough PW; Johnson CB Plant Cell; 2007 Jun; 19(6):1994-2005. PubMed ID: 17557809 [TBL] [Abstract][Full Text] [Related]
10. Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. McAndrew RP; Peralta-Yahya PP; DeGiovanni A; Pereira JH; Hadi MZ; Keasling JD; Adams PD Structure; 2011 Dec; 19(12):1876-84. PubMed ID: 22153510 [TBL] [Abstract][Full Text] [Related]
11. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Deguerry F; Pastore L; Wu S; Clark A; Chappell J; Schalk M Arch Biochem Biophys; 2006 Oct; 454(2):123-36. PubMed ID: 16970904 [TBL] [Abstract][Full Text] [Related]
13. An analysis of characterized plant sesquiterpene synthases. Durairaj J; Di Girolamo A; Bouwmeester HJ; de Ridder D; Beekwilder J; van Dijk AD Phytochemistry; 2019 Feb; 158():157-165. PubMed ID: 30446165 [TBL] [Abstract][Full Text] [Related]
14. Conversion of protein farnesyltransferase to a geranylgeranyltransferase. Terry KL; Casey PJ; Beese LS Biochemistry; 2006 Aug; 45(32):9746-55. PubMed ID: 16893176 [TBL] [Abstract][Full Text] [Related]
16. Alteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution. Lee PC; Mijts BN; Petri R; Watts KT; Schmidt-Dannert C Protein Eng Des Sel; 2004 Nov; 17(11):771-7. PubMed ID: 15548566 [TBL] [Abstract][Full Text] [Related]
17. Point mutation of (+)-germacrene A synthase from Ixeris dentata. Chang YJ; Jin J; Nam HY; Kim SU Biotechnol Lett; 2005 Mar; 27(5):285-8. PubMed ID: 15834787 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase. Gonzalez V; Touchet S; Grundy DJ; Faraldos JA; Allemann RK J Am Chem Soc; 2014 Oct; 136(41):14505-12. PubMed ID: 25230152 [TBL] [Abstract][Full Text] [Related]
19. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Chica RA; Doucet N; Pelletier JN Curr Opin Biotechnol; 2005 Aug; 16(4):378-84. PubMed ID: 15994074 [TBL] [Abstract][Full Text] [Related]
20. Sesquiterpene synthases: passive catalysts or active players? Miller DJ; Allemann RK Nat Prod Rep; 2012 Jan; 29(1):60-71. PubMed ID: 22068697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]