These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 16495996)

  • 1. Aluminium control of argon solubility in silicate melts under pressure.
    Bouhifd MA; Jephcoat AP
    Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle.
    Matsukage KN; Jing Z; Karato S
    Nature; 2005 Nov; 438(7067):488-91. PubMed ID: 16306990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking of Henry's law for noble gas and CO2 solubility in silicate melt under pressure.
    Sarda P; Guillot B
    Nature; 2005 Jul; 436(7047):95-8. PubMed ID: 16001067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.
    Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP
    Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrous silicate melt at high pressure.
    Mookherjee M; Stixrude L; Karki B
    Nature; 2008 Apr; 452(7190):983-6. PubMed ID: 18432243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning of oxygen during core formation on the Earth and Mars.
    Rubie DC; Gessmann CK; Frost DJ
    Nature; 2004 May; 429(6987):58-61. PubMed ID: 15129278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity of MgSiO3 liquid at Earth's mantle conditions: implications for an early magma ocean.
    Karki BB; Stixrude LP
    Science; 2010 May; 328(5979):740-2. PubMed ID: 20448181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Magma Ocean Solidification on Earth Through Laser-Heated Diamond Anvil Cell Experiments.
    Nabiei F; Badro J; Boukaré CÉ; Hébert C; Cantoni M; Borensztajn S; Wehr N; Gillet P
    Geophys Res Lett; 2021 Jun; 48(12):e2021GL092446. PubMed ID: 34219835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accretion of the Earth and segregation of its core.
    Wood BJ; Walter MJ; Wade J
    Nature; 2006 Jun; 441(7095):825-33. PubMed ID: 16778882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A crystallizing dense magma ocean at the base of the Earth's mantle.
    Labrosse S; Hernlund JW; Coltice N
    Nature; 2007 Dec; 450(7171):866-9. PubMed ID: 18064010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiative conductivity in the Earth's lower mantle.
    Goncharov AF; Haugen BD; Struzhkin VV; Beck P; Jacobsen SD
    Nature; 2008 Nov; 456(7219):231-4. PubMed ID: 19005553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting of iron at the physical conditions of the Earth's core.
    Nguyen JH; Holmes NC
    Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
    Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N
    Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth's mantle.
    Lee SK; Lin JF; Cai YQ; Hiraoka N; Eng PJ; Okuchi T; Mao HK; Meng Y; Hu MY; Chow P; Shu J; Li B; Fukui H; Lee BH; Kim HN; Yoo CS
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7925-9. PubMed ID: 18535140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of MgSiO3 melts at core-mantle boundary conditions.
    Petitgirard S; Malfait WJ; Sinmyo R; Kupenko I; Hennet L; Harries D; Dane T; Burghammer M; Rubie DC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14186-90. PubMed ID: 26578761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting in the Earth's deep upper mantle caused by carbon dioxide.
    Dasgupta R; Hirschmann MM
    Nature; 2006 Mar; 440(7084):659-62. PubMed ID: 16572168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
    Carrez P; Ferré D; Cordier P
    Nature; 2007 Mar; 446(7131):68-70. PubMed ID: 17330041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.