BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16496016)

  • 1. Inducible regulation of Runx2-stimulated osteogenesis.
    Gersbach CA; Le Doux JM; Guldberg RE; García AJ
    Gene Ther; 2006 Jun; 13(11):873-82. PubMed ID: 16496016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo osteoblastic differentiation of BMP-2- and Runx2-engineered skeletal myoblasts.
    Gersbach CA; Guldberg RE; García AJ
    J Cell Biochem; 2007 Apr; 100(5):1324-36. PubMed ID: 17131362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro.
    Gersbach CA; Byers BA; Pavlath GK; Guldberg RE; García AJ
    Biotechnol Bioeng; 2004 Nov; 88(3):369-78. PubMed ID: 15486943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo.
    Zhang X; Yang M; Lin L; Chen P; Ma KT; Zhou CY; Ao YF
    Calcif Tissue Int; 2006 Sep; 79(3):169-78. PubMed ID: 16969589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.
    Phillips JE; García AJ
    Methods Mol Biol; 2008; 433():333-54. PubMed ID: 18679633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells.
    Byers BA; García AJ
    Tissue Eng; 2004; 10(11-12):1623-32. PubMed ID: 15684671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation.
    Monroe DG; Hawse JR; Subramaniam M; Spelsberg TC
    BMC Musculoskelet Disord; 2010 May; 11():104. PubMed ID: 20509905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization.
    Byers BA; Guldberg RE; García AJ
    Tissue Eng; 2004; 10(11-12):1757-66. PubMed ID: 15684684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype.
    Gersbach CA; Byers BA; Pavlath GK; García AJ
    Exp Cell Res; 2004 Nov; 300(2):406-17. PubMed ID: 15475005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent.
    Phillips JE; Hutmacher DW; Guldberg RE; García AJ
    Biomaterials; 2006 Nov; 27(32):5535-45. PubMed ID: 16857257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its recognition and activation of the alkaline phosphatase gene.
    Weng JJ; Su Y
    Biochim Biophys Acta; 2013 Mar; 1830(3):2839-52. PubMed ID: 23287548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects.
    Byers BA; Guldberg RE; Hutmacher DW; García AJ
    J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro.
    Takahashi T
    Calcif Tissue Int; 2011 Apr; 88(4):336-47. PubMed ID: 21258786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of C2C12 myogenic progenitor cells requires the Fos-related antigen Fra-1 - a novel target of Runx2.
    Yu S; Geng Q; Sun F; Yu Y; Pan Q; Hong A
    Biochem Biophys Res Commun; 2013 Jan; 430(1):173-8. PubMed ID: 23159633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo.
    Gong Y; Qian Y; Yang F; Wang H; Yu Y
    Eur J Oral Sci; 2014 Jun; 122(3):190-7. PubMed ID: 24666017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes.
    Hassan MQ; Tare R; Lee SH; Mandeville M; Weiner B; Montecino M; van Wijnen AJ; Stein JL; Stein GS; Lian JB
    Mol Cell Biol; 2007 May; 27(9):3337-52. PubMed ID: 17325044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2.
    Zuo B; Zhu J; Li J; Wang C; Zhao X; Cai G; Li Z; Peng J; Wang P; Shen C; Huang Y; Xu J; Zhang X; Chen X
    J Bone Miner Res; 2015 Feb; 30(2):330-45. PubMed ID: 25195535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells.
    van der Horst G; Farih-Sips H; Löwik CW; Karperien M
    J Bone Miner Res; 2005 Dec; 20(12):2233-44. PubMed ID: 16294276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-like growth factor-1 promotes osteogenic differentiation and collagen I alpha 2 synthesis via induction of mRNA-binding protein LARP6 expression.
    Guo Y; Tang CY; Man XF; Tang HN; Tang J; Zhou CL; Tan SW; Wang M; Feng YZ; Zhou HD
    Dev Growth Differ; 2017 Feb; 59(2):94-103. PubMed ID: 28211947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative regulation of osteoblastogenesis through downregulation of runt-related transcription factor-2 in osteoblastic MC3T3-E1 cells with stable overexpression of the cystine/glutamate antiporter xCT subunit.
    Uno K; Takarada T; Takarada-Iemata M; Nakamura Y; Fujita H; Hinoi E; Yoneda Y
    J Cell Physiol; 2011 Nov; 226(11):2953-64. PubMed ID: 21302293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.