BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16496119)

  • 1. Comparative transcriptome analyses of barley and rice under salt stress.
    Ueda A; Kathiresan A; Bennett J; Takabe T
    Theor Appl Genet; 2006 May; 112(7):1286-94. PubMed ID: 16496119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress.
    Walia H; Wilson C; Ismail AM; Close TJ; Cui X
    BMC Genomics; 2009 Aug; 10():398. PubMed ID: 19706179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice.
    Fu L; Shen Q; Kuang L; Yu J; Wu D; Zhang G
    Plant Physiol Biochem; 2018 Sep; 130():248-257. PubMed ID: 30021179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants.
    Katsuhara M; Koshio K; Shibasaka M; Hayashi Y; Hayakawa T; Kasamo K
    Plant Cell Physiol; 2003 Dec; 44(12):1378-83. PubMed ID: 14701933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle.
    Sakuraba Y; Piao W; Lim JH; Han SH; Kim YS; An G; Paek NC
    Plant Cell Physiol; 2015 Dec; 56(12):2325-39. PubMed ID: 26443376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley.
    Ma J; Jiang QT; Wei L; Yang Q; Zhang XW; Peng YY; Chen GY; Wei YM; Liu C; Zheng YL
    Planta; 2014 Dec; 240(6):1179-90. PubMed ID: 25100144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic stress in barley regulates expression of a different set of genes than salt stress does.
    Ueda A; Kathiresan A; Inada M; Narita Y; Nakamura T; Shi W; Takabe T; Bennett J
    J Exp Bot; 2004 Oct; 55(406):2213-8. PubMed ID: 15361537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley.
    Oztur ZN; Talamé V; Deyholos M; Michalowski CB; Galbraith DW; Gozukirmizi N; Tuberosa R; Bohnert HJ
    Plant Mol Biol; 2002; 48(5-6):551-73. PubMed ID: 11999834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress.
    Bahieldin A; Atef A; Sabir JS; Gadalla NO; Edris S; Alzohairy AM; Radhwan NA; Baeshen MN; Ramadan AM; Eissa HF; Hassan SM; Baeshen NA; Abuzinadah O; Al-Kordy MA; El-Domyati FM; Jansen RK
    C R Biol; 2015 May; 338(5):285-97. PubMed ID: 25882349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron.
    Tombuloglu G; Tombuloglu H; Sakcali MS; Unver T
    Gene; 2015 Feb; 557(1):71-81. PubMed ID: 25498907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional study of a salt-inducible TaSR gene in Triticum aestivum.
    Ma XL; Cui WN; Zhao Q; Zhao J; Hou XN; Li DY; Chen ZL; Shen YZ; Huang ZJ
    Physiol Plant; 2016 Jan; 156(1):40-53. PubMed ID: 25855206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na
    Zhang Y; Fang J; Wu X; Dong L
    BMC Plant Biol; 2018 Dec; 18(1):375. PubMed ID: 30594151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.
    Jiang Y; Deyholos MK
    BMC Plant Biol; 2006 Oct; 6():25. PubMed ID: 17038189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress.
    Walia H; Wilson C; Condamine P; Liu X; Ismail AM; Close TJ
    Plant Cell Environ; 2007 Apr; 30(4):410-21. PubMed ID: 17324228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).
    Ligaba A; Katsuhara M; Shibasaka M; Djira G
    C R Biol; 2011 Feb; 334(2):127-39. PubMed ID: 21333943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants.
    Gao L; Liu M; Wang M; Shen Q; Guo S
    Plant Cell Physiol; 2016 Nov; 57(11):2323-2333. PubMed ID: 27519313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.
    Huang S; Spielmeyer W; Lagudah ES; Munns R
    J Exp Bot; 2008; 59(4):927-37. PubMed ID: 18325922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles.
    Fu L; Wu D; Zhang X; Xu Y; Kuang L; Cai S; Zhang G; Shen Q
    Plant Physiol; 2022 Feb; 188(2):1248-1263. PubMed ID: 34791461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice.
    Kurotani K; Hayashi K; Hatanaka S; Toda Y; Ogawa D; Ichikawa H; Ishimaru Y; Tashita R; Suzuki T; Ueda M; Hattori T; Takeda S
    Plant Cell Physiol; 2015 Apr; 56(4):779-89. PubMed ID: 25637374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.