These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1649632)

  • 21. Kinetics of 125I-ubiquitin conjugation with and liberation from rabbit reticulocyte stroma.
    Dubiel W; Müller M; Rapoport S
    FEBS Lett; 1986 Jan; 194(1):50-5. PubMed ID: 3000824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of arginine-tRNA in protein degradation by the ubiquitin pathway.
    Ferber S; Ciechanover A
    Nature; 1987 Apr 23-29; 326(6115):808-11. PubMed ID: 3033511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue.
    Wilkinson KD; Smith SE; O'Connor L; Sternberg E; Taggart JJ; Berges DA; Butt T
    Biochemistry; 1990 Aug; 29(32):7373-80. PubMed ID: 2171643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved method for preparation of ubiquitin-ligated lysozyme as substrate of ATP-dependent proteolysis.
    Tamura T; Tanaka K; Tanahashi N; Ichihara A
    FEBS Lett; 1991 Nov; 292(1-2):154-8. PubMed ID: 1659994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP-dependent proteolysis of hemoglobin alpha chains in beta-thalassemic hemolysates is ubiquitin-dependent.
    Shaeffer JR
    J Biol Chem; 1988 Sep; 263(27):13663-9. PubMed ID: 2843527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of ubiquitin-dependent proteolysis by des-Gly-Gly-ubiquitin: implications for the mechanism of polyubiquitin synthesis.
    Bamezai S; Tate S; Breslow E
    Biochem Biophys Res Commun; 1989 Jul; 162(1):89-94. PubMed ID: 2546556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protease/inhibitor mechanisms involved in ATP-dependent proteolysis.
    Etlinger JD; Gu M; Li X; Weitman D; Rieder RF
    Revis Biol Celular; 1989; 20():197-216. PubMed ID: 2561542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP binding causes a conformational change in the gamma subunit of the Escherichia coli F1ATPase which is reversed on bond cleavage.
    Turina P; Capaldi RA
    Biochemistry; 1994 Nov; 33(47):14275-80. PubMed ID: 7947838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells.
    Shang F; Taylor A
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):297-303. PubMed ID: 7717989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates.
    Hough R; Pratt G; Rechsteiner M
    J Biol Chem; 1986 Feb; 261(5):2400-8. PubMed ID: 3003114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation.
    Tanaka K; Waxman L; Goldberg AL
    J Biol Chem; 1984 Mar; 259(5):2803-9. PubMed ID: 6321482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of different steps of the ubiquitin system by cisplatin and aclarubicin.
    Isoe T; Naito M; Shirai A; Hirai R; Tsuruo T
    Biochim Biophys Acta; 1992 Sep; 1117(2):131-5. PubMed ID: 1326334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ubiquitin carboxyl-terminal peptides. Substrates for ubiquitin activating enzyme.
    Jonnalagadda S; Ecker DJ; Sternberg EJ; Butt TR; Crooke ST
    J Biol Chem; 1988 Apr; 263(11):5016-9. PubMed ID: 2833493
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex.
    Eytan E; Armon T; Heller H; Beck S; Hershko A
    J Biol Chem; 1993 Mar; 268(7):4668-74. PubMed ID: 8383122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of ATP-dependent proteolysis in embryos of the brine shrimp, Artemia franciscana.
    van Breukelen F; Hand SC
    J Comp Physiol B; 2000 Mar; 170(2):125-33. PubMed ID: 10791572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of adenylyl imidodiphosphate, a nonhydrolyzable adenosine triphosphate analog, on reactivated and rigor wave sea urchin sperm.
    Penningroth SM; Witman GB
    J Cell Biol; 1978 Dec; 79(3):827-32. PubMed ID: 153347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin-protein conjugation.
    Ciechanover A; Finley D; Varshavsky A
    Prog Clin Biol Res; 1985; 180():17-31. PubMed ID: 2994083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP-induced loss of Alz-50 immunoreactivity with the A68 proteins from Alzheimer brain is mediated by ubiquitin.
    Vincent IJ; Davies P
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4840-4. PubMed ID: 2162059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-dependent mechanisms for protein degradation in mammalian cells.
    DeMartino GN; McGuire MJ; Reckelhoff JF; McCullough ML; Croall DE
    Revis Biol Celular; 1989; 20():181-96. PubMed ID: 2561541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.