These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 1649646)
1. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Engelberg I; Kohn J Biomaterials; 1991 Apr; 12(3):292-304. PubMed ID: 1649646 [TBL] [Abstract][Full Text] [Related]
2. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. Lu XL; Sun ZJ; Cai W; Gao ZY J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526 [TBL] [Abstract][Full Text] [Related]
3. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
4. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Zhao H; Zhao G J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization. Wang N; Wu XS; Li C; Feng MF J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281 [TBL] [Abstract][Full Text] [Related]
6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
7. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. Pêgo AP; Poot AA; Grijpma DW; Feijen J J Biomater Sci Polym Ed; 2001; 12(1):35-53. PubMed ID: 11334188 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of PLA/GA polymers: increasing complexity. Vert M; Mauduit J; Li S Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316 [TBL] [Abstract][Full Text] [Related]
9. Preparation, characterization and properties of poly(2,2-dimethyl trimethylene carbonate-co-epsilon-caprolactone)-block-poly(ethylene glycol). Hu Y; Zhu KJ J Biomater Sci Polym Ed; 2003; 14(12):1363-76. PubMed ID: 14870940 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
11. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Jones DS; Djokic J; McCoy CP; Gorman SP Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963 [TBL] [Abstract][Full Text] [Related]
12. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol). von Burkersroda F; Gref R; Göpferich A Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807 [TBL] [Abstract][Full Text] [Related]
13. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis. Pietrzak WS; Kumar M J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292 [TBL] [Abstract][Full Text] [Related]
14. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
16. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides. Zhang Z; Grijpma DW; Feijen J J Mater Sci Mater Med; 2004 Apr; 15(4):381-5. PubMed ID: 15332603 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films. Godbole S; Gote S; Latkar M; Chakrabarti T Bioresour Technol; 2003 Jan; 86(1):33-7. PubMed ID: 12421006 [TBL] [Abstract][Full Text] [Related]
18. Structure and mechanical properties of poly(D,L-lactic acid)/poly(epsilon -caprolactone) blends. Broz ME; VanderHart DL; Washburn NR Biomaterials; 2003 Oct; 24(23):4181-90. PubMed ID: 12853248 [TBL] [Abstract][Full Text] [Related]
19. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. Kranz H; Ubrich N; Maincent P; Bodmeier R J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603 [TBL] [Abstract][Full Text] [Related]
20. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering. Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]