These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 164965)

  • 1. Effects of anaerobiosis and inhibitors on O2-production by human granulocytes.
    Curnutte JT; Babior BM
    Blood; 1975 Jun; 45(6):851-61. PubMed ID: 164965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells.
    Root RK; Metcalf JA
    J Clin Invest; 1977 Dec; 60(6):1266-79. PubMed ID: 199619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
    Babior BM; Curnutte JT; Kipnes BS
    J Clin Invest; 1975 Oct; 56(4):1035-42. PubMed ID: 239968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes.
    Okamura N; Hanakura K; Kodakari M; Ishibashi S
    J Biochem; 1980 Jul; 88(1):139-44. PubMed ID: 6251033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cytoskeletal elements in cytochalasin E-induced superoxide production by human polymorphonuclear leukocytes.
    Nakagawara A; Minakami S
    Biochim Biophys Acta; 1979 Apr; 584(1):143-8. PubMed ID: 221046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1088-96. PubMed ID: 207722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes.
    Curnutte JT; Babior BM
    J Clin Invest; 1974 Jun; 53(6):1662-72. PubMed ID: 4364409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microtubule-disrupting agents on superoxide production in human polymorphonuclear leukocytes.
    Kitagawa S; Takaku F
    Biochim Biophys Acta; 1982 Dec; 719(3):589-98. PubMed ID: 6295508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cytochalasin B on the oxidative metabolism of human peripheral blood granulocytes.
    Roos D; Homan-Müller JW; Weening RS
    Biochem Biophys Res Commun; 1976 Jan; 68(1):43-50. PubMed ID: 174568
    [No Abstract]   [Full Text] [Related]  

  • 12. Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical.
    Hassan HM; Fridovich I
    J Biol Chem; 1979 Nov; 254(21):10846-52. PubMed ID: 227855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes.
    Weening RS; Wever R; Roos D
    J Lab Clin Med; 1975 Feb; 85(2):245-52. PubMed ID: 163283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation.
    Cohen HJ; Chovaniec ME; Davies WA
    Blood; 1980 Mar; 55(3):355-63. PubMed ID: 6244012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of superoxide anions by leukocytes treated with cytochalasin E.
    Nakagawara A; Minakami S
    Biochem Biophys Res Commun; 1975 May; 64(2):760-7. PubMed ID: 167755
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes.
    Rosen H; Klebanoff SJ
    J Clin Invest; 1976 Jul; 58(1):50-60. PubMed ID: 180060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes.
    Minta JO; Williams MD
    J Rheumatol; 1986 Jun; 13(3):498-504. PubMed ID: 3016258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Levels of DNA strand breaks and superoxide in phorbol ester-treated human granulocytes.
    Birnboim HC; Sandhu JK
    J Cell Biochem; 1997 Aug; 66(2):219-28. PubMed ID: 9213223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1081-7. PubMed ID: 26695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.