These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16497066)

  • 1. First-principles studies of chiral step reconstructions of Cu(100) by adsorbed glycine and alanine.
    Rankin RB; Sholl DS
    J Chem Phys; 2006 Feb; 124(7):74703. PubMed ID: 16497066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of dense glycine and alanine adlayers on chiral Cu(3,1,17) surfaces.
    Rankin RB; Sholl DS
    Langmuir; 2006 Sep; 22(19):8096-103. PubMed ID: 16952247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of enantiospecific chemisorption on chiral Cu surfaces vicinal to Cu(111) and Cu(100) using density functional theory.
    Bhatia B; Sholl DS
    J Chem Phys; 2008 Apr; 128(14):144709. PubMed ID: 18412473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of glycine, enantiopure alanine, and racemic alanine adlayers on Cu(110) and Cu(100) surfaces.
    Rankin RB; Sholl DS
    J Phys Chem B; 2005 Sep; 109(35):16764-73. PubMed ID: 16853135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).
    Barlow SM; Louafi S; Le Roux D; Williams J; Muryn C; Haq S; Raval R
    Langmuir; 2004 Aug; 20(17):7171-6. PubMed ID: 15301502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bond-induced pair formation of glycine on the chiral Cu{531} surface.
    Eralp T; Shavorskiy A; Zheleva ZV; Dhanak VR; Held G
    Langmuir; 2010 Jul; 26(13):10918-23. PubMed ID: 20527828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantiospecific adsorption of amino acids on hydroxylated quartz (0001).
    Han JW; Sholl DS
    Langmuir; 2009 Sep; 25(18):10737-45. PubMed ID: 19496574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic excitations of glycine, alanine, and cysteine conformers from first-principles calculations.
    Maul R; Preuss M; Ortmann F; Hannewald K; Bechstedt F
    J Phys Chem A; 2007 May; 111(20):4370-7. PubMed ID: 17461555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A step toward the wet surface chemistry of glycine and alanine on Cu{110}: destabilization and decomposition in the presence of near-ambient water vapor.
    Shavorskiy A; Aksoy F; Grass ME; Liu Z; Bluhm H; Held G
    J Am Chem Soc; 2011 May; 133(17):6659-67. PubMed ID: 21473591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Cu(+) and Cu(2+) ions with alpha-alanine. A density functional study.
    Marino T; Russo N; Toscano M
    J Mass Spectrom; 2002 Aug; 37(8):786-91. PubMed ID: 12203672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical speciation of adsorbed glycine on metal surfaces.
    Han JW; James JN; Sholl DS
    J Chem Phys; 2011 Jul; 135(3):034703. PubMed ID: 21787019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective separation on a naturally chiral surface.
    Horvath JD; Koritnik A; Kamakoti P; Sholl DS; Gellman AJ
    J Am Chem Soc; 2004 Nov; 126(45):14988-94. PubMed ID: 15535728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-alaninol adsorption on Cu(100): photoelectron spectroscopy and first-principles calculations.
    Gori P; Contini G; Prosperi T; Catone D; Turchini S; Zema N; Palma A
    J Phys Chem B; 2008 Apr; 112(13):3963-70. PubMed ID: 18327933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces.
    Almora-Barrios N; Austen KF; de Leeuw NH
    Langmuir; 2009 May; 25(9):5018-25. PubMed ID: 19397352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for chemical transformations of (R,R)-tartaric acid on Cu(110): A first principles study.
    Zhang J; Lu T; Jiang C; Zou J; Cao F; Chen Y
    J Chem Phys; 2009 Oct; 131(14):144703. PubMed ID: 19831460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantiospecific equilibrium adsorption and chemistry of d-/l-proline mixtures on chiral and achiral Cu surfaces.
    Dutta S; Gellman AJ
    Chirality; 2020 Feb; 32(2):200-214. PubMed ID: 31762092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular orientation and intermolecular interaction in alanine on Cu(001).
    Iwai H; Egawa C
    Langmuir; 2010 Feb; 26(4):2294-300. PubMed ID: 19916533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of N2O on Cu(100): a combined scanning tunneling microscopy and density functional theory study.
    Franke KJ; Fernández-Torrente I; Pascual JI; Lorente N
    Phys Chem Chem Phys; 2008 Mar; 10(12):1640-7. PubMed ID: 18338064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing conformers and adsorption footprints at the single-molecule level in a highly organized amino acid assembly of (S)-proline on Cu(110).
    Forster M; Dyer MS; Persson M; Raval R
    J Am Chem Soc; 2009 Jul; 131(29):10173-81. PubMed ID: 19580280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical simulations of structure and X-ray photoelectron spectra of glycine and diglycine adsorbed on Cu(110).
    Carravetta V; Monti S; Li C; Ågren H
    Langmuir; 2013 Aug; 29(32):10194-204. PubMed ID: 23855985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.