These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16497329)
21. Identification of genes expressed in vascular tissues using NPA-induced vascular overgrowth in Arabidopsis. Wenzel CL; Hester Q; Mattsson J Plant Cell Physiol; 2008 Mar; 49(3):457-68. PubMed ID: 18296723 [TBL] [Abstract][Full Text] [Related]
22. Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China. Zhang J; Wu MD; Li GQ; Yang L; Yu L; Jiang DH; Huang HC; Zhuang WY Mycologia; 2010; 102(5):1114-26. PubMed ID: 20943510 [TBL] [Abstract][Full Text] [Related]
23. Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. Chen X; Shen G; Wang Y; Zheng X; Wang Y FEMS Microbiol Lett; 2007 Apr; 269(2):280-8. PubMed ID: 17263843 [TBL] [Abstract][Full Text] [Related]
24. Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Kishimoto K; Matsui K; Ozawa R; Takabayashi J Phytochemistry; 2008 Aug; 69(11):2127-32. PubMed ID: 18556030 [TBL] [Abstract][Full Text] [Related]
26. Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella graminicola with a focus on in planta expression. Kema GH; van der Lee TA; Mendes O; Verstappen EC; Lankhorst RK; Sandbrink H; van der Burgt A; Zwiers LH; Csukai M; Waalwijk C Mol Plant Microbe Interact; 2008 Sep; 21(9):1249-60. PubMed ID: 18700829 [TBL] [Abstract][Full Text] [Related]
27. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Iwakawa H; Iwasaki M; Kojima S; Ueno Y; Soma T; Tanaka H; Semiarti E; Machida Y; Machida C Plant J; 2007 Jul; 51(2):173-84. PubMed ID: 17559509 [TBL] [Abstract][Full Text] [Related]
28. Transcriptional regulation of plant senescence: from functional genomics to systems biology. Breeze E; Harrison E; Page T; Warner N; Shen C; Zhang C; Buchanan-Wollaston V Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():99-109. PubMed ID: 18721315 [TBL] [Abstract][Full Text] [Related]
29. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Schumacher J; Viaud M; Simon A; Tudzynski B Mol Microbiol; 2008 Mar; 67(5):1027-50. PubMed ID: 18208491 [TBL] [Abstract][Full Text] [Related]
30. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211 [TBL] [Abstract][Full Text] [Related]
31. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Kasza Z; Vagvölgyi C; Févre M; Cotton P Curr Microbiol; 2004 Mar; 48(3):208-13. PubMed ID: 15057467 [TBL] [Abstract][Full Text] [Related]
32. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M; Fournier E; Kunz C; Levis C; Pradier JM; Simon A; Viaud M FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079 [TBL] [Abstract][Full Text] [Related]
33. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641 [TBL] [Abstract][Full Text] [Related]
34. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Simon A; Dalmais B; Morgant G; Viaud M Fungal Genet Biol; 2013 Mar; 52():9-19. PubMed ID: 23396263 [TBL] [Abstract][Full Text] [Related]
35. Transcriptomic profile of Arabidopsis rosette leaves during the reproductive stage after exposure to ionizing radiation. Kim JH; Moon YR; Kim JS; Oh MH; Lee JW; Chung BY Radiat Res; 2007 Sep; 168(3):267-80. PubMed ID: 17705638 [TBL] [Abstract][Full Text] [Related]
37. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Murray SL; Ingle RA; Petersen LN; Denby KJ Mol Plant Microbe Interact; 2007 Nov; 20(11):1431-8. PubMed ID: 17977154 [TBL] [Abstract][Full Text] [Related]
38. A Botrytis cinerea emopamil binding domain protein, required for full virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes. Gioti A; Pradier JM; Fournier E; Le Pêcheur P; Giraud C; Debieu D; Bach J; Leroux P; Levis C Eukaryot Cell; 2008 Feb; 7(2):368-78. PubMed ID: 18156289 [TBL] [Abstract][Full Text] [Related]
39. NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Segond D; Dellagi A; Lanquar V; Rigault M; Patrit O; Thomine S; Expert D Plant J; 2009 Apr; 58(2):195-207. PubMed ID: 19121106 [TBL] [Abstract][Full Text] [Related]
40. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]