BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16497360)

  • 1. Reductive dehalogenation of tetrabromobisphenol-A by sediment from a contaminated ephemeral streambed and an enrichment culture.
    Arbeli Z; Ronen Z; Díaz-Báez MC
    Chemosphere; 2006 Aug; 64(9):1472-8. PubMed ID: 16497360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of a microbial culture capable of reductive debromination of the flame retardant tetrabromobisphenol-A, and identification of the intermediate metabolites produced in the process.
    Arbeli Z; Ronen Z
    Biodegradation; 2003 Dec; 14(6):385-95. PubMed ID: 14669869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2-02, isolated from anaerobic sludge.
    Peng X; Zhang Z; Luo W; Jia X
    Bioresour Technol; 2013 Jan; 128():173-9. PubMed ID: 23201509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source.
    Rysavy JP; Yan T; Novak PJ
    Water Res; 2005 Feb; 39(4):569-78. PubMed ID: 15707629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A.
    Zhang C; Li Z; Suzuki D; Ye L; Yoshida N; Katayama A
    Chemosphere; 2013 Aug; 92(10):1343-8. PubMed ID: 23769323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of an enrichment culture debrominating tetrabromobisphenol A and optimization of its activity under anaerobic conditions.
    Iasur-Kruh L; Ronen Z; Arbeli Z; Nejidat A
    J Appl Microbiol; 2010 Aug; 109(2):707-715. PubMed ID: 20202021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradability of tetrabromobisphenol A and tribromophenol by activated sludge.
    Brenner A; Mukmenev I; Abeliovich A; Kushmaro A
    Ecotoxicology; 2006 May; 15(4):399-402. PubMed ID: 16708282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment.
    Chang BV; Yuan SY; Ren YL
    Chemosphere; 2012 Apr; 87(5):535-41. PubMed ID: 22245059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment.
    Yang S; Yoshida N; Baba D; Katayama A
    Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates.
    Guo Y; Lou X; Xiao D; Xu L; Wang Z; Liu J
    J Hazard Mater; 2012 Nov; 241-242():301-6. PubMed ID: 23046696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.
    van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J
    Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community.
    Li G; Xiong J; Wong PK; An T
    Environ Pollut; 2016 Jan; 208(Pt B):796-802. PubMed ID: 26602791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community.
    Yang Y; Pesaro M; Sigler W; Zeyer J
    Water Res; 2005 Oct; 39(16):3954-66. PubMed ID: 16112710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A.
    Ronen Z; Abeliovich A
    Appl Environ Microbiol; 2000 Jun; 66(6):2372-7. PubMed ID: 10831413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehalogenation of 2,6-dibromobiphenyl and 2,3,4,5,6-pentachlorobiphenyl in contaminated estuarine sediment.
    Palekar LD; Maruya KA; Kostka JE; Wiegel J
    Chemosphere; 2003 Nov; 53(6):593-600. PubMed ID: 12962708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate addition promotes the nitrogen cycling processes under the co-contaminated tetrabromobisphenol A and copper condition in river sediment.
    Wang L; Li Y; Fan C; Wang P; Niu L; Wang L
    Environ Pollut; 2019 Aug; 251():659-667. PubMed ID: 31108299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition.
    Luo W; Wu WM; Yan T; Criddle CS; Jardine PM; Zhou J; Gu B
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):713-21. PubMed ID: 17874092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mangrove species on removal of tetrabromobisphenol A from contaminated sediments.
    Jiang Y; Lu H; Xia K; Wang Q; Yang J; Hong H; Liu J; Yan C
    Chemosphere; 2020 Apr; 244():125385. PubMed ID: 31790995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China.
    Zhang XL; Luo XJ; Chen SJ; Wu JP; Mai BX
    Environ Pollut; 2009 Jun; 157(6):1917-23. PubMed ID: 19232799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetate promotes microbial reductive debromination of tetrabromobisphenol A during the startup phase of anaerobic wastewater sludge bioreactors.
    Lefevre E; Redfern L; Cooper EM; Stapleton HM; Gunsch CK
    Sci Total Environ; 2019 Mar; 656():959-968. PubMed ID: 30625682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.