BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16497403)

  • 21. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide.
    Kim SR; Rhee MS; Kim BC; Kim KH
    Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores.
    Hong YF; Kang JG; Lee HY; Uhm HS; Moon E; Park YH
    Lett Appl Microbiol; 2009 Jan; 48(1):33-7. PubMed ID: 19018968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide.
    Hemmer JD; Drews MJ; LaBerge M; Matthews MA
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):511-8. PubMed ID: 16838346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sterilization of ginseng using a high pressure CO2 at moderate temperatures.
    Dehghani F; Annabi N; Titus M; Valtchev P; Tumilar A
    Biotechnol Bioeng; 2009 Feb; 102(2):569-76. PubMed ID: 18726960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of survival rates and cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon dioxide under the influence of cosolvents.
    Kim SR; Park HJ; Yim do S; Kim HT; Choi IG; Kim KH
    J Microbiol Methods; 2008 Sep; 75(1):47-54. PubMed ID: 18565606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Tests of the microbiologic barrier in sterile packaging].
    Jakimiak B; Röhm-Rodowald E
    Rocz Panstw Zakl Hig; 2002; 53(2):197-202. PubMed ID: 12235676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.
    Kawamura K; Sakuma A; Nakamura Y; Oguri T; Sato N; Kido N
    Microbiol Immunol; 2012 Jul; 56(7):431-40. PubMed ID: 22469251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of a dense gas technique for sterilizing soft biomaterials.
    Karajanagi SS; Yoganathan R; Mammucari R; Park H; Cox J; Zeitels SM; Langer R; Foster NR
    Biotechnol Bioeng; 2011 Jul; 108(7):1716-25. PubMed ID: 21337339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen.
    Lee K; Paek KH; Ju WT; Lee Y
    J Microbiol; 2006 Jun; 44(3):269-75. PubMed ID: 16820756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Discussion on the Application of Supercritical Carbon Dioxide Technology for Sterilization of Medical Devices].
    Hu K; Yang H; Chao Y; Xie X; Yu H; Geng H; Zhen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Mar; 44(3):236-241. PubMed ID: 32621432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation behavior of Pseudomonas aeruginosa by supercritical N₂O compared to supercritical CO₂.
    Mun S; Hahn JS; Lee YW; Yoon J
    Int J Food Microbiol; 2011 Jan; 144(3):372-8. PubMed ID: 21078533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.
    Juliano P; Knoerzer K; Fryer PJ; Versteeg C
    Biotechnol Prog; 2009; 25(1):163-75. PubMed ID: 19197999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores.
    Lasch P; Nattermann H; Erhard M; Stämmler M; Grunow R; Bannert N; Appel B; Naumann D
    Anal Chem; 2008 Mar; 80(6):2026-34. PubMed ID: 18290666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of aerosolized Bacillus atrophaeus (BG) endospores and MS2 viruses by combustion of reactive materials.
    Grinshpun SA; Adhikari A; Yermakov M; Reponen T; Dreizin E; Schoenitz M; Hoffmann V; Zhang S
    Environ Sci Technol; 2012 Jul; 46(13):7334-41. PubMed ID: 22662743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human pathogens, nosocomial infections, heat-sensitive textile implants, and an innovative approach to deal with them.
    Cinquemani C
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):29-37. PubMed ID: 20824488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent patents on the sterilization of food and biomaterials by supercritical fluids.
    Sikin AM; Rizvi SS
    Recent Pat Food Nutr Agric; 2011 Sep; 3(3):212-25. PubMed ID: 21846321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of spores by nonthermal plasmas.
    Puligundla P; Mok C
    World J Microbiol Biotechnol; 2018 Sep; 34(10):143. PubMed ID: 30203172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of utilizing bioindicators for testing microbial inactivation in sweetpotato purees processed with a continuous-flow microwave system.
    Brinley TA; Dock CN; Truong VD; Coronel P; Kumar P; Simunovic J; Sandeep KP; Cartwright GD; Swartzel KR; Jaykus LA
    J Food Sci; 2007 Jun; 72(5):E235-42. PubMed ID: 17995721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology.
    McEvoy B; Lynch M; Rowan NJ
    J Appl Microbiol; 2021 Jun; 130(6):1794-1812. PubMed ID: 33155740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of supercritical carbon dioxide sterilization on polysaccharidic membranes for surgical applications.
    Scognamiglio F; Blanchy M; Borgogna M; Travan A; Donati I; Bosmans JWAM; Foulc MP; Bouvy ND; Paoletti S; Marsich E
    Carbohydr Polym; 2017 Oct; 173():482-488. PubMed ID: 28732890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.