These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 16497413)
21. Chronic hyperammonemia in vivo impairs long-term potentiation in hippocampus by altering activation of cyclic GMP-dependent-protein kinase and of phosphodiesterase 5. Monfort P; Muñoz MD; Felipo V J Neurochem; 2005 Aug; 94(4):934-42. PubMed ID: 16092938 [TBL] [Abstract][Full Text] [Related]
22. Chronic hyperammonemia reduces the activity of neuronal nitric oxide synthase in cerebellum by altering its localization and increasing its phosphorylation by calcium-calmodulin kinase II. El-Mlili N; Rodrigo R; Naghizadeh B; Cauli O; Felipo V J Neurochem; 2008 Aug; 106(3):1440-9. PubMed ID: 18498443 [TBL] [Abstract][Full Text] [Related]
23. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia. Cabrera-Pastor A; Llansola M; Felipo V ACS Chem Neurosci; 2016 Dec; 7(12):1753-1759. PubMed ID: 27673574 [TBL] [Abstract][Full Text] [Related]
24. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy. Felipo V World J Gastroenterol; 2006 Dec; 12(48):7737-43. PubMed ID: 17203513 [TBL] [Abstract][Full Text] [Related]
25. Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia. Monfort P; Muñoz MD; Kosenko E; Llansola M; Sánchez-Pérez A; Cauli O; Felipo V Neurochem Int; 2004 Nov; 45(6):895-901. PubMed ID: 15312984 [TBL] [Abstract][Full Text] [Related]
26. Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Cabrera-Pastor A; Balzano T; Hernández-Rabaza V; Malaguarnera M; Llansola M; Felipo V Brain Behav Immun; 2018 Mar; 69():386-398. PubMed ID: 29288802 [TBL] [Abstract][Full Text] [Related]
27. Developmental exposure to polychlorinated biphenyls or methylmercury, but not to its combination, impairs the glutamate-nitric oxide-cyclic GMP pathway and learning in 3-month-old rats. Piedrafita B; Erceg S; Cauli O; Felipo V Neuroscience; 2008 Jul; 154(4):1408-16. PubMed ID: 18556134 [TBL] [Abstract][Full Text] [Related]
28. Glutamate transporter and receptor function in disorders of ammonia metabolism. Butterworth RF Ment Retard Dev Disabil Res Rev; 2001; 7(4):276-9. PubMed ID: 11754522 [TBL] [Abstract][Full Text] [Related]
29. Role of nitric oxide/cyclic GMP pathway in regulating spontaneous excitations in detrusor smooth muscle of the guinea-pig bladder. Yanai Y; Hashitani H; Hayase M; Sasaki S; Suzuki H; Kohri K Neurourol Urodyn; 2008; 27(5):446-53. PubMed ID: 17929303 [TBL] [Abstract][Full Text] [Related]
30. Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. Gonzalez-Usano A; Cauli O; Agusti A; Felipo V ACS Chem Neurosci; 2014 Feb; 5(2):100-5. PubMed ID: 24256194 [TBL] [Abstract][Full Text] [Related]
31. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. Hernandez-Rabaza V; Cabrera-Pastor A; Taoro-Gonzalez L; Gonzalez-Usano A; Agusti A; Balzano T; Llansola M; Felipo V J Neuroinflammation; 2016 Apr; 13(1):83. PubMed ID: 27090509 [TBL] [Abstract][Full Text] [Related]
32. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Cabrera-Pastor A; Hernandez-Rabaza V; Taoro-Gonzalez L; Balzano T; Llansola M; Felipo V Brain Behav Immun; 2016 Oct; 57():360-370. PubMed ID: 27189036 [TBL] [Abstract][Full Text] [Related]
33. Effects of sildenafil on pulmonary hypertension and levels of ET-1, eNOS, and cGMP in aorta-banded rats. Dai ZK; Tan MS; Chai CY; Chou SH; Lin PC; Yeh JL; Jeng AY; Chang CI; Chen IJ; Wu JR Exp Biol Med (Maywood); 2006 Jun; 231(6):942-7. PubMed ID: 16741028 [TBL] [Abstract][Full Text] [Related]
34. An update on the role of brain glutamine synthesis and its relation to cell-specific energy metabolism in the hyperammonemic brain: further studies using NMR spectroscopy. Zwingmann C; Butterworth R Neurochem Int; 2005 Jul; 47(1-2):19-30. PubMed ID: 15916833 [TBL] [Abstract][Full Text] [Related]
35. Celecoxib dilates guinea-pig coronaries and rat aortic rings and amplifies NO/cGMP signaling by PDE5 inhibition. Klein T; Eltze M; Grebe T; Hatzelmann A; Kömhoff M Cardiovasc Res; 2007 Jul; 75(2):390-7. PubMed ID: 17383621 [TBL] [Abstract][Full Text] [Related]
36. Phosphodiesterase 5 inhibitors prevent 3,4-methylenedioxymethamphetamine-induced 5-HT deficits in the rat. Puerta E; Hervias I; Goñi-Allo B; Lasheras B; Jordan J; Aguirre N J Neurochem; 2009 Feb; 108(3):755-66. PubMed ID: 19187094 [TBL] [Abstract][Full Text] [Related]
37. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Cabrera-Pastor A; Arenas YM; Taoro-Gonzalez L; Montoliu C; Felipo V Neuropharmacology; 2019 Dec; 161():107496. PubMed ID: 30641078 [TBL] [Abstract][Full Text] [Related]
38. Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Devan BD; Bowker JL; Duffy KB; Bharati IS; Jimenez M; Sierra-Mercado D; Nelson CM; Spangler EL; Ingram DK Psychopharmacology (Berl); 2006 Jan; 183(4):439-45. PubMed ID: 16320087 [TBL] [Abstract][Full Text] [Related]
39. Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra. Cauli O; Llansola M; Erceg S; Felipo V J Hepatol; 2006 Nov; 45(5):654-61. PubMed ID: 16982110 [TBL] [Abstract][Full Text] [Related]
40. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: ibuprofen restores its motor activity. Cauli O; Rodrigo R; Piedrafita B; Llansola M; Mansouri MT; Felipo V J Neurosci Res; 2009 May; 87(6):1369-74. PubMed ID: 19025766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]