BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16497507)

  • 1. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury.
    Hamada M; Yoshikawa H; Ueda Y; Kurokawa MS; Watanabe K; Sakakibara M; Tadokoro M; Akashi K; Aoki H; Suzuki N
    Neurobiol Dis; 2006 Jun; 22(3):509-22. PubMed ID: 16497507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.
    Ikeda R; Kurokawa MS; Chiba S; Yoshikawa H; Hashimoto T; Tadokoro M; Suzuki N
    Exp Neurol; 2004 Oct; 189(2):280-92. PubMed ID: 15380479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury.
    Kim JE; Liu BP; Park JH; Strittmatter SM
    Neuron; 2004 Oct; 44(3):439-51. PubMed ID: 15504325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis.
    Bréjot T; Blanchard S; Hocquemiller M; Haase G; Liu S; Nosjean A; Heard JM; Bohl D
    Exp Neurol; 2006 Mar; 198(1):167-82. PubMed ID: 16434037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of motoneuron-enriched neural cells derived from mouse embryonic stem cells improves motor function of hemiplegic mice.
    Chiba S; Iwasaki Y; Sekino H; Suzuki N
    Cell Transplant; 2003; 12(5):457-68. PubMed ID: 12953919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of embryonic motoneuron transplants to restore the lost motor function of the injured spinal cord.
    Nógrádi A; Pajer K; Márton G
    Ann Anat; 2011 Jul; 193(4):362-70. PubMed ID: 21600746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury.
    Chen J; Bernreuther C; Dihné M; Schachner M
    J Neurotrauma; 2005 Aug; 22(8):896-906. PubMed ID: 16083356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
    Lepore AC; Fischer I
    Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Experimental study on transplantation of embryonic stem cells in treating spinal cord injury].
    Yang J; Li C; Zhai R
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 May; 21(5):487-91. PubMed ID: 17578288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.
    Williams RR; Venkatesh I; Pearse DD; Udvadia AJ; Bunge MB
    PLoS One; 2015; 10(3):e0118918. PubMed ID: 25751153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nogo-A expresses on neural stem cell surface.
    Hou T; Shi Y; Cheng S; Yang X; Li L; Xiao C
    Int J Neurosci; 2010 Mar; 120(3):201-5. PubMed ID: 20374087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord.
    Zhang X; Zeng Y; Zhang W; Wang J; Wu J; Li J
    J Neurotrauma; 2007 Dec; 24(12):1863-77. PubMed ID: 18159998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nogo domains and a Nogo receptor: implications for axon regeneration.
    Brittis PA; Flanagan JG
    Neuron; 2001 Apr; 30(1):11-4. PubMed ID: 11343640
    [No Abstract]   [Full Text] [Related]  

  • 18. Adult neural progenitor cells provide a permissive guiding substrate for corticospinal axon growth following spinal cord injury.
    Pfeifer K; Vroemen M; Blesch A; Weidner N
    Eur J Neurosci; 2004 Oct; 20(7):1695-704. PubMed ID: 15379990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.
    Boido M; Rupa R; Garbossa D; Fontanella M; Ducati A; Vercelli A
    Eur J Neurosci; 2009 Sep; 30(5):833-46. PubMed ID: 19712091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.