BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 16497544)

  • 1. Conformation study of HA(306-318) antigenic peptide of the haemagglutinin influenza virus protein.
    Bertrand A; Brito RM; Alix AJ; Lancelin JM; Carvalho RA; Geraldes CF; Lakhdar-Ghazal F
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):711-8. PubMed ID: 16497544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular dichroism and Fourier-transform infrared spectroscopic studies on T-cell epitopic peptide fragments of influenza virus hemagglutinin.
    Holly S; Majer Z; Tóth GK; Váradi G; Rajnavölgyi E; Laczkó I; Hollósi M
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1247-54. PubMed ID: 7686750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy.
    Hinshelwood J; Perkins SJ
    J Mol Biol; 2000 Apr; 298(1):135-47. PubMed ID: 10756110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences of a peptide corresponding to the major antigenic determinant of foot-and-mouth disease virus: implications for peptide-vaccine approaches.
    de Prat-Gay G
    Arch Biochem Biophys; 1997 May; 341(2):360-9. PubMed ID: 9169027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the intersubunit region of influenza virus hemagglutinin: comparative CD and FTIR spectroscopic studies on multiple antigenic peptides.
    Majer Z; Holly S; Tóth GK; Váradi G; Nagy Z; Horváth A; Rajnavölgyi E; Laczkó I; Hollósi M
    Arch Biochem Biophys; 1995 Sep; 322(1):112-8. PubMed ID: 7574664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of antimicrobial pexiganan peptide in solution probed by Fourier transform infrared absorption, vibrational circular dichroism, and electronic circular dichroism spectroscopy.
    Shanmugam G; Polavarapu PL; Gopinath D; Jayakumar R
    Biopolymers; 2005; 80(5):636-42. PubMed ID: 15657879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H NMR structural study of free and template-linked antigenic peptide representing the C-terminal region of the heavy chain of influenza virus hemagglutinin.
    Wilce JA; Zeng W; Rose K; Craik DJ; Jackson DC
    Biomed Pept Proteins Nucleic Acids; 1996; 2(2):51-8. PubMed ID: 9346827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations.
    Lee KK; Joo C; Yang S; Han H; Cho M
    J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared and circular dichroism spectroscopic characterization of structural differences between beta-lactoglobulin A and B.
    Dong A; Matsuura J; Allison SD; Chrisman E; Manning MC; Carpenter JF
    Biochemistry; 1996 Feb; 35(5):1450-7. PubMed ID: 8634275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational mapping of amyloid peptides from the putative neurotoxic 25-35 region.
    Laczkó I; Holly S; Kónya Z; Soós K; Varga JL; Hollósi M; Penke B
    Biochem Biophys Res Commun; 1994 Nov; 205(1):120-6. PubMed ID: 7999011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structure of recombinant human cystathionine beta-synthase in aqueous solution: effect of ligand binding and proteolytic truncation.
    Dong A; Kery V; Matsuura J; Manning MC; Kraus JP; Carpenter JF
    Arch Biochem Biophys; 1997 Aug; 344(1):125-32. PubMed ID: 9244389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformations of hydrophobic peptides in trifluoroethanol, water and in solid state: a circular dichroism and Fourier Transform Infrared study.
    Jagannadham MV; Krishnamurthy AS; Husain S; Nagaraj R
    Indian J Biochem Biophys; 1999 Dec; 36(6):422-8. PubMed ID: 10844996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH.
    Chang DK; Cheng SF; Trivedi VD
    Arch Biochem Biophys; 2001 Dec; 396(1):89-98. PubMed ID: 11716466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The preferred conformation of the tripeptide Ala-Phe-Ala in water is an inverse gamma-turn: implications for protein folding and drug design.
    Motta A; Reches M; Pappalardo L; Andreotti G; Gazit E
    Biochemistry; 2005 Nov; 44(43):14170-8. PubMed ID: 16245933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of a 14-residue peptide ligand of the retinoblastoma protein: comparison with a nonbinding analog.
    Breese K; Friedrich T; Andersen TT; Smith TF; Figge J
    Pept Res; 1991; 4(4):220-6. PubMed ID: 1823601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of amyloid beta peptide fragment (25-35) in different microenvironments.
    Shanmugam G; Jayakumar R
    Biopolymers; 2004; 76(5):421-34. PubMed ID: 15468066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of D-amino acids at Asp23 and Ser26 residues on the conformational preference of Abeta20-29 peptides.
    Shanmugam G; Polavarapu PL; Hallgas B; Majer Z
    Biochem Biophys Res Commun; 2005 Sep; 335(3):712-22. PubMed ID: 16091285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of solution conformation on antibody recognition of a protein core epitope from gastrointestinal mucin (MUC2).
    Uray K; Kajtár J; Vass E; Price MR; Hollósi M; Hudecz F
    Arch Biochem Biophys; 1999 Jan; 361(1):65-74. PubMed ID: 9882429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.