BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1649793)

  • 1. Control over the sequence specificity of DNA alkylation: syntheses and reactions with 32P-end-labelled DNA of N-alkyl-N-nitrosoureas linked to minor groove binding lexitropsins.
    Gold B; Church KM; Wurdeman RL; Zhang Y; Chen FX
    IARC Sci Publ; 1991; (105):439-42. PubMed ID: 1649793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA.
    Church KM; Wurdeman RL; Zhang Y; Chen FX; Gold B
    Biochemistry; 1990 Jul; 29(29):6827-38. PubMed ID: 2168742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-(2-chloroethyl)-N-nitrosourea tethered to lexitropsin induces minor groove lesions at the p53 cDNA that are more cytotoxic than mutagenic.
    Inga A; Chen FX; Monti P; Aprile A; Campomenosi P; Menichini P; Ottaggio L; Viaggi S; Abbondandolo A; Gold B; Fronza G
    Cancer Res; 1999 Feb; 59(3):689-95. PubMed ID: 9973219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition between oligopeptides and nucleic acids: DNA sequence specificity and binding properties of thiazole-lexitropsins incorporating the concepts of base site acceptance and avoidance.
    Rao KE; Shea RG; Yadagiri B; Lown JW
    Anticancer Drug Des; 1990 Feb; 5(1):3-20. PubMed ID: 2156516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA sequence-selective binding of head-to-tail linked bis-lexitropsins: relation of phasing to cytotoxic potency.
    Guo D; Gupta R; Lown JW
    Anticancer Drug Des; 1993 Oct; 8(5):369-97. PubMed ID: 8251044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA adducts of N-nitrosoureas.
    Eisenbrand G; Pfeiffer C; Tang W
    IARC Sci Publ; 1994; (125):277-93. PubMed ID: 7806318
    [No Abstract]   [Full Text] [Related]  

  • 7. Groove- and sequence-selective alkylation of DNA by sulfonate esters tethered to lexitropsins.
    Zhang Y; Chen FX; Mehta P; Gold B
    Biochemistry; 1993 Aug; 32(31):7954-65. PubMed ID: 8394120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA recognition by lexitropsins, minor groove binding agents.
    Lown JW
    J Mol Recognit; 1994 Jun; 7(2):79-88. PubMed ID: 7826677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, DNA sequence preferential alkylation and biological evaluation of N-mustard derivatives of distamycin and netropsin analogues.
    Xie G; Gupta R; Lown JW
    Anticancer Drug Des; 1995 Jul; 10(5):389-409. PubMed ID: 7639929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbocyclic analogues of netropsin and distamycin: DNA-binding properties and inhibition of DNA topoisomerases.
    Bartulewicz D; Bielawski K; Bielawska A
    Arch Pharm (Weinheim); 2002 Nov; 335(9):422-6. PubMed ID: 12447915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of prototype lexitropsins to the minor groove of DNA: quantum chemical studies.
    Mazurek P; Feng W; Shukla K; Sapse AM; Lown JW
    J Biomol Struct Dyn; 1991 Oct; 9(2):299-313. PubMed ID: 1660279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in the design of DNA sequence-specific lexitropsins.
    Walker WL; Kopka ML; Goodsell DS
    Biopolymers; 1997; 44(4):323-34. PubMed ID: 9782774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic analogues of netropsin and distamycin. VI. Synthesis of carbocyclic lexitropsins containing a bioreductive element.
    Markowska A; Rózański A
    Acta Pol Pharm; 2000 Nov; 57 Suppl():71-6. PubMed ID: 11293271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence selectivity, cross-linking efficiency and cytotoxicity of DNA-targeted 4-anilinoquinoline aniline mustards.
    McClean S; Costelloe C; Denny WA; Searcey M; Wakelin LP
    Anticancer Drug Des; 1999 Jun; 14(3):187-204. PubMed ID: 10500495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA minor groove binding of cross-linked lexitropsins: experimental conditions required to observe the covalently linked WPPW (groove wall-peptide-peptide-groove wall) motif.
    Chen YH; Lown JW
    Biophys J; 1995 May; 68(5):2041-8. PubMed ID: 7612846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel DNA-directed alkylating agents consisting of naphthalimide, nitrogen mustard and lexitropsin moieties: synthesis, DNA sequence specificity and biological evaluation.
    Gupta R; Liu J; Xie G; Lown JW
    Anticancer Drug Des; 1996 Dec; 11(8):581-96. PubMed ID: 9022747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the methyl substituents of a thiazole-containing lexitropsin on the mode of binding to DNA.
    Plouvier B; Houssin R; Helbecque N; Colson P; Houssier C; Hénichart JP; Bailly C
    Anticancer Drug Des; 1995 Mar; 10(2):155-66. PubMed ID: 7710636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA binding properties of minor groove binders and their influence on the topoisomerase II cleavage reaction.
    Bell A; Kittler L; Löber G; Zimmer C
    J Mol Recognit; 1997; 10(6):245-55. PubMed ID: 9770648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents.
    Hartley JA; Gibson NW; Kohn KW; Mattes WB
    Cancer Res; 1986 Apr; 46(4 Pt 2):1943-7. PubMed ID: 3004713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psoralen--lexitropsin hybrids: DNA sequence selectivity of photoinduced cross-linking from MPE footprinting and exonuclease III stop assay, and mode of binding from electric linear dichroism.
    Rao KE; Gosselin G; Mrani D; Périgaud C; Imbach JL; Bailly C; Hénichart JP; Colson P; Houssier C; Lown JW
    Anticancer Drug Des; 1994 Jun; 9(3):221-37. PubMed ID: 8031454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.