These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 16497933)
21. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment. Bilotti K; Kennedy EE; Li C; Delaney S DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740 [TBL] [Abstract][Full Text] [Related]
22. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Buechner CN; Maiti A; Drohat AC; Tessmer I Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093 [TBL] [Abstract][Full Text] [Related]
23. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Fromme JC; Verdine GL Nat Struct Biol; 2002 Jul; 9(7):544-52. PubMed ID: 12055620 [TBL] [Abstract][Full Text] [Related]
24. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791 [TBL] [Abstract][Full Text] [Related]
25. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase. Shigdel UK; Ovchinnikov V; Lee SJ; Shih JA; Karplus M; Nam K; Verdine GL Nat Commun; 2020 Sep; 11(1):4437. PubMed ID: 32895378 [TBL] [Abstract][Full Text] [Related]
26. DNA lesion recognition by the bacterial repair enzyme MutM. Fromme JC; Verdine GL J Biol Chem; 2003 Dec; 278(51):51543-8. PubMed ID: 14525999 [TBL] [Abstract][Full Text] [Related]
27. Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase. Kellie JL; Wilson KA; Wetmore SD Biochemistry; 2013 Dec; 52(48):8753-65. PubMed ID: 24168684 [TBL] [Abstract][Full Text] [Related]
28. The origins of high-affinity enzyme binding to an extrahelical DNA base. Krosky DJ; Song F; Stivers JT Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884 [TBL] [Abstract][Full Text] [Related]
29. Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Lee S; Verdine GL Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18497-502. PubMed ID: 19841264 [TBL] [Abstract][Full Text] [Related]
31. Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase. Amara P; Serre L DNA Repair (Amst); 2006 Aug; 5(8):947-58. PubMed ID: 16857432 [TBL] [Abstract][Full Text] [Related]
32. Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion. Abner CW; Lau AY; Ellenberger T; Bloom LB J Biol Chem; 2001 Apr; 276(16):13379-87. PubMed ID: 11278716 [TBL] [Abstract][Full Text] [Related]
33. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue. Hendershot JM; O'Brien PJ J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435 [TBL] [Abstract][Full Text] [Related]
34. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531 [TBL] [Abstract][Full Text] [Related]
35. Depurination of N7-methylguanine by DNA glycosylase AlkD is dependent on the DNA backbone. Rubinson EH; Christov PP; Eichman BF Biochemistry; 2013 Oct; 52(42):7363-5. PubMed ID: 24090276 [TBL] [Abstract][Full Text] [Related]
36. Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. Sung RJ; Zhang M; Qi Y; Verdine GL J Biol Chem; 2012 May; 287(22):18044-54. PubMed ID: 22465958 [TBL] [Abstract][Full Text] [Related]
37. Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA. Bowman BR; Lee S; Wang S; Verdine GL Structure; 2008 Aug; 16(8):1166-74. PubMed ID: 18682218 [TBL] [Abstract][Full Text] [Related]
38. Dynamic opening of DNA during the enzymatic search for a damaged base. Cao C; Jiang YL; Stivers JT; Song F Nat Struct Mol Biol; 2004 Dec; 11(12):1230-6. PubMed ID: 15558051 [TBL] [Abstract][Full Text] [Related]
39. Theoretical study of DNA damage recognition via electron transfer from the [4Fe-4S] complex of MutY. Lin JC; Singh RR; Cox DL Biophys J; 2008 Oct; 95(7):3259-68. PubMed ID: 18599627 [TBL] [Abstract][Full Text] [Related]
40. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases. Shi R; Shen XX; Rokas A; Eichman BF Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]