BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 16498400)

  • 1. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides.
    Alaimo C; Catrein I; Morf L; Marolda CL; Callewaert N; Valvano MA; Feldman MF; Aebi M
    EMBO J; 2006 Mar; 25(5):967-76. PubMed ID: 16498400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of Outward-Facing PglK and Molecular Dynamics of Lipid-Linked Oligosaccharide Recognition and Translocation.
    Perez C; Mehdipour AR; Hummer G; Locher KP
    Structure; 2019 Apr; 27(4):669-678.e5. PubMed ID: 30799077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in Our Understanding of Wzx Flippase for Translocation of Bacterial Membrane Lipid-Linked Oligosaccharide.
    Hong Y; Liu MA; Reeves PR
    J Bacteriol; 2018 Jan; 200(1):. PubMed ID: 28696276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat.
    Feldman MF; Marolda CL; Monteiro MA; Perry MB; Parodi AJ; Valvano MA
    J Biol Chem; 1999 Dec; 274(49):35129-38. PubMed ID: 10574995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of an active lipid-linked oligosaccharide flippase.
    Perez C; Gerber S; Boilevin J; Bucher M; Darbre T; Aebi M; Reymond JL; Locher KP
    Nature; 2015 Aug; 524(7566):433-8. PubMed ID: 26266984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen.
    Marolda CL; Tatar LD; Alaimo C; Aebi M; Valvano MA
    J Bacteriol; 2006 Jul; 188(14):5124-35. PubMed ID: 16816184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody.
    Perez C; Köhler M; Janser D; Pardon E; Steyaert J; Zenobi R; Locher KP
    Sci Rep; 2017 Apr; 7():46641. PubMed ID: 28422165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli.
    Feldman MF; Wacker M; Hernandez M; Hitchen PG; Marolda CL; Kowarik M; Morris HR; Dell A; Valvano MA; Aebi M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3016-21. PubMed ID: 15703289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.
    Wacker M; Linton D; Hitchen PG; Nita-Lazar M; Haslam SM; North SJ; Panico M; Morris HR; Dell A; Wren BW; Aebi M
    Science; 2002 Nov; 298(5599):1790-3. PubMed ID: 12459590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway.
    Linton D; Dorrell N; Hitchen PG; Amber S; Karlyshev AV; Morris HR; Dell A; Valvano MA; Aebi M; Wren BW
    Mol Microbiol; 2005 Mar; 55(6):1695-703. PubMed ID: 15752194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit.
    Marolda CL; Vicarioli J; Valvano MA
    Microbiology (Reading); 2004 Dec; 150(Pt 12):4095-105. PubMed ID: 15583162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen.
    Rick PD; Barr K; Sankaran K; Kajimura J; Rush JS; Waechter CJ
    J Biol Chem; 2003 May; 278(19):16534-42. PubMed ID: 12621029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flipping a Lipid-Linked Oligosaccharide? You Must Whip It!
    Lehrman MA
    Trends Biochem Sci; 2015 Dec; 40(12):715-717. PubMed ID: 26476576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria.
    Hug I; Feldman MF
    Glycobiology; 2011 Feb; 21(2):138-51. PubMed ID: 20871101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons.
    Silverman JM; Imperiali B
    J Biol Chem; 2016 Oct; 291(42):22001-22010. PubMed ID: 27573243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity.
    Karlyshev AV; Linton D; Gregson NA; Lastovica AJ; Wren BW
    Mol Microbiol; 2000 Feb; 35(3):529-41. PubMed ID: 10672176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Aeromonas caviae genomic island is required for both O-antigen lipopolysaccharide biosynthesis and flagellin glycosylation.
    Tabei SM; Hitchen PG; Day-Williams MJ; Merino S; Vart R; Pang PC; Horsburgh GJ; Viches S; Wilhelms M; Tomás JM; Dell A; Shaw JG
    J Bacteriol; 2009 Apr; 191(8):2851-63. PubMed ID: 19218387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL.
    van Sorge NM; Bleumink NM; van Vliet SJ; Saeland E; van der Pol WL; van Kooyk Y; van Putten JP
    Cell Microbiol; 2009 Dec; 11(12):1768-81. PubMed ID: 19681908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O.
    Scott NE; Marzook NB; Cain JA; Solis N; Thaysen-Andersen M; Djordjevic SP; Packer NH; Larsen MR; Cordwell SJ
    J Proteome Res; 2014 Nov; 13(11):5136-50. PubMed ID: 25093254
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.