BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16499056)

  • 1. [Fluorescence polarization used to derive cell membrane fluidity during photodynamic therapy].
    Wei RH; Huang YP; Li SS; Qi CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1827-9. PubMed ID: 16499056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring oxygen concentration during photodynamic therapy using prompt photosensitizer fluorescence.
    Weston MA; Patterson MS
    Phys Med Biol; 2013 Oct; 58(20):7039-59. PubMed ID: 24051952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phthalocyanine-based photosensitizers: more efficient photodynamic therapy?
    Ng DK
    Future Med Chem; 2014; 6(18):1991-3. PubMed ID: 25531964
    [No Abstract]   [Full Text] [Related]  

  • 4. Peptide-substituted phthalocyanine photosensitizers: design, synthesis, photophysicochemical and photobiological studies.
    Göksel M; Durmuş M; Atilla D
    Photochem Photobiol Sci; 2016 Oct; 15(10):1318-1329. PubMed ID: 27714248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy.
    Jiang Z; Shao J; Yang T; Wang J; Jia L
    J Pharm Biomed Anal; 2014 Jan; 87():98-104. PubMed ID: 23746989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates.
    Stuchinskaya T; Moreno M; Cook MJ; Edwards DR; Russell DA
    Photochem Photobiol Sci; 2011 May; 10(5):822-31. PubMed ID: 21455532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.
    Li K; Qiu L; Liu Q; Lv G; Zhao X; Wang S; Lin J
    J Photochem Photobiol B; 2017 Sep; 174():243-250. PubMed ID: 28802175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4.
    Xue LY; Chiu SM; Oleinick NL
    Oncogene; 2001 Jun; 20(26):3420-7. PubMed ID: 11423992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines.
    Sailer R; Strauss WS; Wagner M; Emmert H; Schneckenburger H
    Photochem Photobiol Sci; 2007 Feb; 6(2):145-51. PubMed ID: 17277837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor quantum dots for photodynamic therapy.
    Samia AC; Chen X; Burda C
    J Am Chem Soc; 2003 Dec; 125(51):15736-7. PubMed ID: 14677951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the dual activity of a chalcone-phthalocyanine conjugate: design, synthesis, and antivascular and photodynamic properties.
    Tuncel S; Trivella A; Atilla D; Bennis K; Savoie H; Albrieux F; Delort L; Billard H; Dubois V; Ahsen V; Caldefie-Chézet F; Richard C; Boyle RW; Ducki S; Dumoulin F
    Mol Pharm; 2013 Oct; 10(10):3706-16. PubMed ID: 23937202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy.
    Makhseed S; Machacek M; Alfadly W; Tuhl A; Vinodh M; Simunek T; Novakova V; Kubat P; Rudolf E; Zimcik P
    Chem Commun (Camb); 2013 Dec; 49(95):11149-51. PubMed ID: 24040651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dose responses of hydrophilic aluminium (III) phthalocyanine chloride tetrasulphonate based photosensitizer on lung cancer cells.
    Crous A; Dhilip Kumar SS; Abrahamse H
    J Photochem Photobiol B; 2019 May; 194():96-106. PubMed ID: 30953915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Electron paramagnetic resonance (EPR) spin labeling study in HT-29 Colon adenocarcinoma cells after Hypericin-mediated photodynamic therapy.
    Yonar D; Kılıç Süloğlu A; Selmanoğlu G; Sünnetçioğlu MM
    BMC Mol Cell Biol; 2019 Jun; 20(1):16. PubMed ID: 31221093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y; van Lier JE; Paquette B; Houde D
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical-translational studies.
    Miller JD; Baron ED; Scull H; Hsia A; Berlin JC; McCormick T; Colussi V; Kenney ME; Cooper KD; Oleinick NL
    Toxicol Appl Pharmacol; 2007 Nov; 224(3):290-9. PubMed ID: 17397888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caspase-independent apoptosis, in human MCF-7c3 breast cancer cells, following photodynamic therapy, with a novel water-soluble phthalocyanine.
    Vittar NB; Awruch J; Azizuddin K; Rivarola V
    Int J Biochem Cell Biol; 2010 Jul; 42(7):1123-31. PubMed ID: 20382257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy.
    Morris RL; Azizuddin K; Lam M; Berlin J; Nieminen AL; Kenney ME; Samia AC; Burda C; Oleinick NL
    Cancer Res; 2003 Sep; 63(17):5194-7. PubMed ID: 14500343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic gold nanorods can carry sulfonated aluminum phthalocyanine to improve photodynamic detection and therapy of cancers.
    Li L; Chen JY; Wu X; Wang PN; Peng Q
    J Phys Chem B; 2010 Dec; 114(51):17194-200. PubMed ID: 21138283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy.
    Kim J; Santos OA; Park JH
    J Control Release; 2014 Oct; 191():98-104. PubMed ID: 24892975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.