These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16499143)

  • 21. Survey of catalysts for oxidation of mercury in flue gas.
    Presto AA; Granite EJ
    Environ Sci Technol; 2006 Sep; 40(18):5601-9. PubMed ID: 17007115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocatalytic removal of elemental mercury via Ce-doped TiO
    Xin F; Ma S; Yang J; Zhao Y; Zhang J; Zheng C
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21281-21291. PubMed ID: 32270458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.
    Tian H; Wang Y; Cheng K; Qu Y; Hao J; Xue Z; Chai F
    J Air Waste Manag Assoc; 2012 May; 62(5):576-86. PubMed ID: 22696807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas.
    Qu Z; Yan N; Liu P; Chi Y; Jia J
    Environ Sci Technol; 2009 Nov; 43(22):8610-5. PubMed ID: 20028060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous removal of NO
    Jędrusik M; Łuszkiewicz D; Świerczok A; Gostomczyk MA; Kobylańska-Pawlisz M
    J Air Waste Manag Assoc; 2020 Jun; 70(6):629-640. PubMed ID: 32182191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas.
    Li Y; Murphy PD; Wu CY; Powers KW; Bonzongo JC
    Environ Sci Technol; 2008 Jul; 42(14):5304-9. PubMed ID: 18754385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B; Helble JJ
    Environ Sci Technol; 2007 Nov; 41(22):7870-5. PubMed ID: 18075101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel oxidative method for the absorption of Hg(0) from flue gas of coal fired power plants using task specific ionic liquid scrubber.
    Barnea Z; Sachs T; Chidambaram M; Sasson Y
    J Hazard Mater; 2013 Jan; 244-245():495-500. PubMed ID: 23199593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.
    Wu C; Cao Y; Dong Z; Cheng C; Li H; Pan W
    J Environ Sci (China); 2010; 22(2):277-82. PubMed ID: 20397418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM
    Li Z; Jiang J; Ma Z; Fajardo OA; Deng J; Duan L
    Environ Pollut; 2017 Nov; 230():655-662. PubMed ID: 28715770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.
    Ancora MP; Zhang L; Wang S; Schreifels J; Hao J
    J Environ Sci (China); 2015 Jul; 33():125-34. PubMed ID: 26141885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun cerium-based TiO
    Wang L; Zhao Y; Zhang J
    Chemosphere; 2017 Oct; 185():690-698. PubMed ID: 28728126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Removal of gaseous elemental mercury over cerium doped low vanadium loading V2O5-WO3/TiO2 in simulated coal-fired flue gas].
    Wan Q; Duan L; He KB; Chen L; Li JH
    Huan Jing Ke Xue; 2011 Sep; 32(9):2800-4. PubMed ID: 22165254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.
    Li H; Wu S; Wu CY; Wang J; Li L; Shih K
    Environ Sci Technol; 2015 Jun; 49(12):7373-9. PubMed ID: 25961487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].
    Yu C; Wang SX; Hao JM
    Huan Jing Ke Xue; 2010 Jul; 31(7):1464-9. PubMed ID: 20825011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.