These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 16499447)
1. Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions. Iwata A; Browne KD; Pfister BJ; Gruner JA; Smith DH Tissue Eng; 2006 Jan; 12(1):101-10. PubMed ID: 16499447 [TBL] [Abstract][Full Text] [Related]
2. Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats. Sullivan PZ; AlBayar A; Burrell JC; Browne KD; Arena J; Johnson V; Smith DH; Cullen DK; Ozturk AK Tissue Eng Part A; 2021 Oct; 27(19-20):1264-1274. PubMed ID: 33430694 [TBL] [Abstract][Full Text] [Related]
3. Development of transplantable nervous tissue constructs comprised of stretch-grown axons. Pfister BJ; Iwata A; Taylor AG; Wolf JA; Meaney DF; Smith DH J Neurosci Methods; 2006 May; 153(1):95-103. PubMed ID: 16337007 [TBL] [Abstract][Full Text] [Related]
4. A Strategy Toward Bridging a Complete Spinal Cord Lesion Using Stretch-Grown Axons. Sadik ME; Ozturk AK; Albayar A; Branche M; Sullivan PZ; Schlosser LO; Browne KD; Jaye AH; Smith DH Tissue Eng Part A; 2020 Jun; 26(11-12):623-635. PubMed ID: 31852361 [TBL] [Abstract][Full Text] [Related]
5. Functional connections are established in the deafferented rat spinal cord by peripherally transplanted human embryonic sensory neurons. Levinsson A; Holmberg H; Schouenborg J; Seiger A; Aldskogius H; Kozlova EN Eur J Neurosci; 2000 Oct; 12(10):3589-95. PubMed ID: 11029629 [TBL] [Abstract][Full Text] [Related]
6. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513 [TBL] [Abstract][Full Text] [Related]
7. Long-term survival and integration of transplanted engineered nervous tissue constructs promotes peripheral nerve regeneration. Huang JH; Cullen DK; Browne KD; Groff R; Zhang J; Pfister BJ; Zager EL; Smith DH Tissue Eng Part A; 2009 Jul; 15(7):1677-85. PubMed ID: 19231968 [TBL] [Abstract][Full Text] [Related]
8. Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps. Deumens R; Koopmans GC; Honig WM; Maquet V; Jérôme R; Steinbusch HW; Joosten EA Neurosci Lett; 2006 Jun; 400(3):208-12. PubMed ID: 16530957 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Hodgetts SI; Simmons PJ; Plant GW Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131 [TBL] [Abstract][Full Text] [Related]
10. Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Nomura H; Zahir T; Kim H; Katayama Y; Kulbatski I; Morshead CM; Shoichet MS; Tator CH Tissue Eng Part A; 2008 May; 14(5):649-65. PubMed ID: 18419246 [TBL] [Abstract][Full Text] [Related]
11. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering. Itosaka H; Kuroda S; Shichinohe H; Yasuda H; Yano S; Kamei S; Kawamura R; Hida K; Iwasaki Y Neuropathology; 2009 Jun; 29(3):248-57. PubMed ID: 18992011 [TBL] [Abstract][Full Text] [Related]
12. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
13. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703 [TBL] [Abstract][Full Text] [Related]
14. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]