These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 1649996)
1. Relative binding free energy calculations of inhibitors to two mutants (Glu46----Ala/Gln) of ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA Protein Eng; 1991 Feb; 4(3):233-43. PubMed ID: 1649996 [TBL] [Abstract][Full Text] [Related]
2. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches. Hirono S; Kollman PA J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020 [TBL] [Abstract][Full Text] [Related]
3. RNase T1 mutant Glu46Gln binds the inhibitors 2'GMP and 2'AMP at the 3' subsite. Granzin J; Puras-Lutzke R; Landt O; Grunert HP; Heinemann U; Saenger W; Hahn U J Mol Biol; 1992 May; 225(2):533-42. PubMed ID: 1350642 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of the contribution of Glu46 and Asn98 to the guanosine specificity of ribonuclease T1. Steyaert J; Opsomer C; Wyns L; Stanssens P Biochemistry; 1991 Jan; 30(2):494-9. PubMed ID: 1899029 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of ribonuclease T1 complexed with adenosine 2'-monophosphate at 1.8-A resolution. Ding J; Koellner G; Grunert HP; Saenger W J Biol Chem; 1991 Aug; 266(23):15128-34. PubMed ID: 1651320 [TBL] [Abstract][Full Text] [Related]
6. Modes of binding of 2'-AMP to RNase T1. A computer modeling study. Balaji PV; Saenger W; Rao VS J Biomol Struct Dyn; 1992 Apr; 9(5):959-69. PubMed ID: 1524709 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the structures of phosphodiesterase 10 binding with adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate by hybrid quantum mechanical/molecular mechanical calculations. Lu H; Goren AC; Zhan CG J Phys Chem B; 2010 May; 114(20):7022-8. PubMed ID: 20443609 [TBL] [Abstract][Full Text] [Related]
8. Site specific point mutation changes specificity: a molecular modeling study by free energy simulations and enzyme kinetics of the thermodynamics in ribonuclease T1 substrate interactions. Elofsson A; Kulinski T; Rigler R; Nilsson L Proteins; 1993 Oct; 17(2):161-75. PubMed ID: 8265564 [TBL] [Abstract][Full Text] [Related]
9. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. Reddy MR; Erion MD J Am Chem Soc; 2001 Jul; 123(26):6246-52. PubMed ID: 11427047 [TBL] [Abstract][Full Text] [Related]
10. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S; Kollman PA Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of a mutant ribonuclease T1 (Y45W) complexed with non-cognizable ribonucleotide, 2'AMP, and its comparison with a specific complex with 2'GMP. Hakoshima T; Itoh T; Tomita K; Goda K; Nishikawa S; Morioka H; Uesugi S; Ohtsuka E; Ikehara M J Mol Biol; 1992 Feb; 223(4):1013-28. PubMed ID: 1311385 [TBL] [Abstract][Full Text] [Related]
13. Calculation of relative binding affinities of fructose 1,6-bisphosphatase mutants with adenosine monophosphate using free energy perturbation method. Mutyala R; Reddy RN; Sumakanth M; Reddanna P; Reddy MR J Comput Chem; 2007 Apr; 28(5):932-7. PubMed ID: 17253638 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobic effects on protein/nucleic acid interaction: enhancement of substrate binding by mutating tyrosine 45 to tryptophan in ribonuclease T1. Hakoshima T; Tanaka M; Itoh T; Tomita KI; Amisaki T; Nishikawa S; Morioka H; Uesugi S; Ohtsuka E; Ikehara M Protein Eng; 1991 Oct; 4(7):793-9. PubMed ID: 1724696 [TBL] [Abstract][Full Text] [Related]
15. Non-cognizable ribonucleotide, 2'AMP, binds to a mutant ribonuclease T1 (Y45W) at a new base-binding site but not at the guanine-recognition site. Hakoshima T; Itoh T; Gohda K; Tomita K; Uesugi S; Nishikawa S; Morioka H; Ohtsuka E; Ikehara M FEBS Lett; 1991 Sep; 290(1-2):216-20. PubMed ID: 1655533 [TBL] [Abstract][Full Text] [Related]
17. X-ray crystallographic and calorimetric studies of the effects of the mutation Trp59-->Tyr in ribonuclease T1. Schubert WD; Schluckebier G; Backmann J; Granzin J; Kisker C; Choe HW; Hahn U; Pfeil W; Saenger W Eur J Biochem; 1994 Mar; 220(2):527-34. PubMed ID: 8125111 [TBL] [Abstract][Full Text] [Related]
18. Preference for syn conformation: crystal structures of free acid and ammonium salt of adenosine 2'-monophosphate: an inhibitor of RNase T1. Padiyar GS; Seshadri TP J Biomol Struct Dyn; 1998 Feb; 15(4):793-802. PubMed ID: 9514254 [TBL] [Abstract][Full Text] [Related]
19. Raman spectroscopic study on the structure of ribonuclease F1 and the binding mode of inhibitor. Takeuchi H; Harada I; Yoshida H Biochim Biophys Acta; 1991 Jul; 1078(3):307-12. PubMed ID: 1650248 [TBL] [Abstract][Full Text] [Related]
20. Guanylyl 2'-5' guanosine as an inhibitor of ribonuclease T1. White MD; Rapoport S; Lapidot Y Biochem Biophys Res Commun; 1977 Aug; 77(3):1084-7. PubMed ID: 197947 [No Abstract] [Full Text] [Related] [Next] [New Search]