BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16500604)

  • 1. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles.
    Li ZP; Duan XR; Liu CH; Du BA
    Anal Biochem; 2006 Apr; 351(1):18-25. PubMed ID: 16500604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles.
    Fan Y; Long YF; Li YF
    Anal Chim Acta; 2009 Oct; 653(2):207-11. PubMed ID: 19808115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique.
    Zou QC; Yan QJ; Song GW; Zhang SL; Wu LM
    Biosens Bioelectron; 2007 Feb; 22(7):1461-5. PubMed ID: 16884901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer.
    Zhang JQ; Wang YS; He Y; Jiang T; Yang HM; Tan X; Kang RH; Yuan YK; Shi LF
    Anal Biochem; 2010 Feb; 397(2):212-7. PubMed ID: 19849997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe.
    Liu S; Yang Z; Liu Z; Kong L
    Anal Biochem; 2006 Jun; 353(1):108-16. PubMed ID: 16620749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homocysteine-mediated reactivity and assembly of gold nanoparticles.
    Lim II; Ip W; Crew E; Njoki PN; Mott D; Zhong CJ; Pan Y; Zhou S
    Langmuir; 2007 Jan; 23(2):826-33. PubMed ID: 17209640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of proteins at nanogram levels with Bordeaux red based on the enhancement of resonance light scattering.
    Feng S; Pan Z; Fan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jun; 64(3):574-9. PubMed ID: 16529993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application.
    Liu SP; Yang Z; Liu ZF; Liu JT; Shi Y
    Anal Chim Acta; 2006 Jul; 572(2):283-9. PubMed ID: 17723490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes.
    Chen Z; Wang Z; Chen J; Wang S; Huang X
    Analyst; 2012 Jul; 137(13):3132-7. PubMed ID: 22624147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe.
    Liu SP; He YQ; Liu ZF; Kong L; Lu QM
    Anal Chim Acta; 2007 Aug; 598(2):304-11. PubMed ID: 17719906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on self-assembly of gold nanoparticles directed by glutathione with resonance light scattering technique and its analytical applications.
    Duan XR; Li ZP; Cui PJ; Su YQ
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3842-8. PubMed ID: 17256339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of deoxyribonucleic acid with neutral red by resonance light scattering method].
    Xiang HY; Chen XM; Li SQ; Xia S; Liu AX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Dec; 21(6):822-5. PubMed ID: 12958905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules.
    Merican Z; Schiller TL; Hawker CJ; Fredericks PM; Blakey I
    Langmuir; 2007 Oct; 23(21):10539-45. PubMed ID: 17824719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles.
    Feng DQ; Liu G; Zheng W; Liu J; Chen T; Li D
    Chem Commun (Camb); 2011 Aug; 47(30):8557-9. PubMed ID: 21706106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light.
    Chai F; Wang C; Wang T; Ma Z; Su Z
    Nanotechnology; 2010 Jan; 21(2):025501. PubMed ID: 19955605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance light scattering study on the interaction between quinidine sulfate and congo red and its analytical application.
    Zeng Y; Cai L; Wang H; Li L; You W; Guo L; Chen G
    Luminescence; 2010; 25(1):30-5. PubMed ID: 19572383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.