BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16500737)

  • 1. Experimental evaluation of the holding power/stiffness of the self-tapping bone screws in normal and osteoporotic bone material.
    Battula S; Schoenfeld A; Vrabec G; Njus GO
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):533-7. PubMed ID: 16500737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone.
    Battula S; Schoenfeld AJ; Sahai V; Vrabec GA; Tank J; Njus GO
    J Trauma; 2008 Apr; 64(4):990-5. PubMed ID: 18404066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pullout strength and load to failure properties of self-tapping cortical screws in synthetic and cadaveric environments representative of healthy and osteoporotic bone.
    Schoenfeld AJ; Battula S; Sahai V; Vrabec GA; Corman S; Burton L; Njus GO
    J Trauma; 2008 May; 64(5):1302-7. PubMed ID: 18469654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine thread versus coarse thread. A comparison of the maximum holding power.
    Gausepohl T; Möhring R; Pennig D; Koebke J
    Injury; 2001 Dec; 32 Suppl 4():SD1-7. PubMed ID: 11812471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holding power of variable pitch screws in osteoporotic, osteopenic and normal bone: are all screws created equal?
    Ramaswamy R; Evans S; Kosashvili Y
    Injury; 2010 Feb; 41(2):179-83. PubMed ID: 19747678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pullout strength variance among self-tapping screws inserted to different depths.
    Schoenfeld A; Vrabec G; Battula S; Salvator A; Njus G
    Am J Orthop (Belle Mead NJ); 2008 Sep; 37(9):466-9. PubMed ID: 18982183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of screw orientation in severely osteoporotic bone: a comparison with locked plating.
    Zehnder S; Bledsoe JG; Puryear A
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):589-94. PubMed ID: 19464094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of a new system to improve screw fixation in osteoporotic bones.
    Yánez A; Carta JA; Garcés G
    Med Eng Phys; 2010 Jun; 32(5):532-41. PubMed ID: 20227321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical tests and finite element models for bone holding power of tibial locking screws.
    Hou SM; Hsu CC; Wang JL; Chao CK; Lin J
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):738-45. PubMed ID: 15288461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping.
    Chen LH; Tai CL; Lai PL; Lee DM; Tsai TT; Fu TS; Niu CC; Chen WJ
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):613-8. PubMed ID: 19481845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength.
    Burval DJ; McLain RF; Milks R; Inceoglu S
    Spine (Phila Pa 1976); 2007 May; 32(10):1077-83. PubMed ID: 17471088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An expandable anchor for fixation in osteoporotic bone.
    McKoy BE; An YH
    J Orthop Res; 2001 Jul; 19(4):545-7. PubMed ID: 11518259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures.
    Patil S; Mahon A; Green S; McMurtry I; Port A
    Knee; 2006 Jun; 13(3):231-5. PubMed ID: 16647262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-drilling and self-tapping screws: an ultrastructural study.
    Goelzer JG; Avelar RL; de Oliveira RB; Hubler R; Silveira RL; Machado RA
    J Craniofac Surg; 2010 Mar; 21(2):513-5. PubMed ID: 20216445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP.
    Dipaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR
    Spine J; 2008; 8(5):717-22. PubMed ID: 17983846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pullout strengths of cannulated and noncannulated cancellous bone screws.
    Thompson JD; Benjamin JB; Szivek JA
    Clin Orthop Relat Res; 1997 Aug; (341):241-9. PubMed ID: 9269180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are locking screws advantageous with plate fixation of humeral shaft fractures? A biomechanical analysis of synthetic and cadaveric bone.
    O'Toole RV; Andersen RC; Vesnovsky O; Alexander M; Topoleski LD; Nascone JW; Sciadini MF; Turen C; Eglseder WA
    J Orthop Trauma; 2008; 22(10):709-15. PubMed ID: 18978547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the osseous/metal interface of drill free screws and self-tapping screws.
    Heidemann W; Terheyden H; Gerlach KL
    J Craniomaxillofac Surg; 2001 Apr; 29(2):69-74. PubMed ID: 11465436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of the loosening characteristics of self-tapped and non-self-tapped cortical bone screws.
    Vangsness CT; Carter DR; Frankel VH
    Clin Orthop Relat Res; 1981 Jun; (157):279-86. PubMed ID: 7249457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.