These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16500757)

  • 1. Laboratory analyses of 60Co2+, 65Zn2+ and (55+59)Fe3+ radiocations uptake by Lemna minor.
    Popa K; Palamaru MN; Iordan AR; Humelnicu D; Drochioiu G; Cecal A
    Isotopes Environ Health Stud; 2006 Mar; 42(1):87-95. PubMed ID: 16500757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying effect of cell wall's carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution.
    Rakhshaee R; Giahi M; Pourahmad A
    J Hazard Mater; 2009 Apr; 163(1):165-73. PubMed ID: 18722059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of plant activity and contaminant speciation in aquatic plant assimilation of 2,4,5-trichlorophenol.
    Tront JM; Saunders FM
    Chemosphere; 2006 Jun; 64(3):400-7. PubMed ID: 16445963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity assessment of heavy metal mixtures by Lemna minor L.
    Horvat T; Vidaković-Cifrek Z; Orescanin V; Tkalec M; Pevalek-Kozlina B
    Sci Total Environ; 2007 Oct; 384(1-3):229-38. PubMed ID: 17610935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S; Semsari S; Couderchet M
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of aluminum by Lemna gibba L. from secondary treated municipal wastewater effluents.
    Obek E; Sasmaz A
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):217-20. PubMed ID: 21253699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Bioresour Technol; 2009 Dec; 100(23):6137-40. PubMed ID: 19581083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies.
    Mukherjee S; Mukherjee S; Bhattacharyya P; Duttagupta AK
    Environ Int; 2004 Aug; 30(6):811-4. PubMed ID: 15120200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species.
    Dosnon-Olette R; Couderchet M; El Arfaoui A; Sayen S; Eullaffroy P
    Sci Total Environ; 2010 Apr; 408(10):2254-9. PubMed ID: 20156640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor.
    Oporto C; Arce O; Van den Broeck E; Van der Bruggen B; Vandecasteele C
    Water Res; 2006 Apr; 40(7):1458-64. PubMed ID: 16540144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccumulation of 65Zn2+ ions by some hydrophytic plants.
    Cecal A; Popa K; Caraus I; Potoroaca V
    Isotopes Environ Health Stud; 2002 Mar; 38(1):33-7. PubMed ID: 12219990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes.
    Suñe N; Sánchez G; Caffaratti S; Maine MA
    Environ Pollut; 2007 Jan; 145(2):467-73. PubMed ID: 16815611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoprotective influence of bacteria on growth and cadmium accumulation in the aquatic plant Lemna minor.
    Stout LM; Dodova EN; Tyson JF; Nüsslein K
    Water Res; 2010 Sep; 44(17):4970-9. PubMed ID: 20732704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of different biological methods for the assessment of ecotoxicological risks.
    Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A
    Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of plant-driven removal of emerging organic pollutants by duckweed.
    Reinhold D; Vishwanathan S; Park JJ; Oh D; Michael Saunders F
    Chemosphere; 2010 Aug; 80(7):687-92. PubMed ID: 20580410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of heavy metals by a ciliate, Tachysoma pellionella, isolated from industrial effluents and its potential use in bioremediation of toxic wastewater.
    Rehman A; Shakoori FR; Shakoori AR
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):469-76. PubMed ID: 17033876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.