BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 16500980)

  • 1. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance.
    Spronk SA; Elmore DE; Dougherty DA
    Biophys J; 2006 May; 90(10):3555-69. PubMed ID: 16500980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance.
    Anishkin A; Kamaraju K; Sukharev S
    J Gen Physiol; 2008 Jul; 132(1):67-83. PubMed ID: 18591417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic properties of the mechanosensitive channel of small conductance MscS.
    Sotomayor M; van der Straaten TA; Ravaioli U; Schulten K
    Biophys J; 2006 May; 90(10):3496-510. PubMed ID: 16513774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS.
    Anishkin A; Sukharev S
    Biophys J; 2004 May; 86(5):2883-95. PubMed ID: 15111405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion conduction through MscS as determined by electrophysiology and simulation.
    Sotomayor M; Vásquez V; Perozo E; Schulten K
    Biophys J; 2007 Feb; 92(3):886-902. PubMed ID: 17114233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel.
    Bass RB; Strop P; Barclay M; Rees DC
    Science; 2002 Nov; 298(5598):1582-7. PubMed ID: 12446901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance.
    Anishkin A; Akitake B; Sukharev S
    Biophys J; 2008 Feb; 94(4):1252-66. PubMed ID: 17981908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS.
    Sotomayor M; Schulten K
    Biophys J; 2004 Nov; 87(5):3050-65. PubMed ID: 15339798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL.
    Tang Y; Cao G; Chen X; Yoo J; Yethiraj A; Cui Q
    Biophys J; 2006 Aug; 91(4):1248-63. PubMed ID: 16731564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration properties of mechanosensitive channel pores define the energetics of gating.
    Anishkin A; Akitake B; Kamaraju K; Chiang CS; Sukharev S
    J Phys Condens Matter; 2010 Nov; 22(45):454120. PubMed ID: 21339607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanosensitive channel of small conductance (MscS) functions as a Jack-in-the box.
    Malcolm HR; Blount P; Maurer JA
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):159-66. PubMed ID: 25450806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of an open form of an E. coli mechanosensitive channel at 3.45 A resolution.
    Wang W; Black SS; Edwards MD; Miller S; Morrison EL; Bartlett W; Dong C; Naismith JH; Booth IR
    Science; 2008 Aug; 321(5893):1179-83. PubMed ID: 18755969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
    Trick JL; Aryal P; Tucker SJ; Sansom MS
    Biochem Soc Trans; 2015 Apr; 43(2):146-50. PubMed ID: 25849908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conduction mechanisms of chloride ions in ClC-type channels.
    Corry B; O'Mara M; Chung SH
    Biophys J; 2004 Feb; 86(2):846-60. PubMed ID: 14747320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure.
    Vora T; Corry B; Chung SH
    Biochim Biophys Acta; 2006 Jun; 1758(6):730-7. PubMed ID: 16781663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of conduction and hydrophobic gating in K+ channels.
    Jensen MØ; Borhani DW; Lindorff-Larsen K; Maragakis P; Jogini V; Eastwood MP; Dror RO; Shaw DE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5833-8. PubMed ID: 20231479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast in silico simulation of ion flux through the large-pore channel proteins.
    Bransburg-Zabary S; Nachliel E; Gutman M
    Biophys J; 2002 Dec; 83(6):3001-11. PubMed ID: 12496073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative and positive temperature dependence of potassium leak in MscS mutants: Implications for understanding thermosensitive channels.
    Koprowski P; Sliwinska MA; Kubalski A
    Biochim Biophys Acta; 2015 Aug; 1848(8):1678-86. PubMed ID: 25958301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.