BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16500984)

  • 1. Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields.
    Allen TW; Andersen OS; Roux B
    Biophys J; 2006 May; 90(10):3447-68. PubMed ID: 16500984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels.
    Allen TW; Andersen OS; Roux B
    Biophys Chem; 2006 Dec; 124(3):251-67. PubMed ID: 16781050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gramicidin A channel as a test ground for molecular dynamics force fields.
    Allen TW; Baştuğ T; Kuyucak S; Chung SH
    Biophys J; 2003 Apr; 84(4):2159-68. PubMed ID: 12668425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Brownian dynamics simulation for estimating potential mean force in ion channel permeation.
    Krishnamurthy V; Chung SH
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):126-38. PubMed ID: 16805109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
    Baştuğ T; Patra SM; Kuyucak S
    Chem Phys Lipids; 2006 Jun; 141(1-2):197-204. PubMed ID: 16600199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test of molecular dynamics force fields in gramicidin A.
    Bastug T; Kuyucak S
    Eur Biophys J; 2005 Jul; 34(5):377-82. PubMed ID: 15711809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.
    Baştuğ T; Kuyucak S
    Biophys J; 2006 Jun; 90(11):3941-50. PubMed ID: 16533834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields.
    Patel S; Davis JE; Bauer BA
    J Am Chem Soc; 2009 Oct; 131(39):13890-1. PubMed ID: 19788320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and computational models of biological ion channels.
    Roux B; Allen T; Bernèche S; Im W
    Q Rev Biophys; 2004 Feb; 37(1):15-103. PubMed ID: 17390604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of ion conduction through the gramicidin channel.
    Allen TW; Andersen OS; Roux B
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):117-22. PubMed ID: 14691245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G; Coveney PV; Villà-Freixa J
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steered molecular dynamics simulations of Na+ permeation across the gramicidin A channel.
    Liu Z; Xu Y; Tang P
    J Phys Chem B; 2006 Jun; 110(25):12789-95. PubMed ID: 16800614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
    Corry B; Chung SH
    Eur Biophys J; 2005 May; 34(3):208-16. PubMed ID: 15536565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gramicidin channels.
    Andersen OS; Koeppe RE; Roux B
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):10-20. PubMed ID: 15816168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of double-ion occupancy in the gramicidin A channel.
    Li Y; Andersen OS; Roux B
    J Phys Chem B; 2010 Nov; 114(43):13881-8. PubMed ID: 20939567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections.
    Peng X; Zhang Y; Chu H; Li Y; Zhang D; Cao L; Li G
    J Chem Theory Comput; 2016 Jun; 12(6):2973-82. PubMed ID: 27171823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.
    Ingólfsson HI; Li Y; Vostrikov VV; Gu H; Hinton JF; Koeppe RE; Roux B; Andersen OS
    J Phys Chem B; 2011 Jun; 115(22):7417-26. PubMed ID: 21574563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeation in ion channels: the interplay of structure and theory.
    Miloshevsky GV; Jordan PC
    Trends Neurosci; 2004 Jun; 27(6):308-14. PubMed ID: 15165734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.