BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 16500991)

  • 1. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.
    Charng YY; Liu HC; Liu NY; Hsu FC; Ko SS
    Plant Physiol; 2006 Apr; 140(4):1297-305. PubMed ID: 16500991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis.
    Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT
    Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana.
    Clarke SM; Mur LA; Wood JE; Scott IM
    Plant J; 2004 May; 38(3):432-47. PubMed ID: 15086804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis.
    Chi WT; Fung RW; Liu HC; Hsu CC; Charng YY
    Plant Cell Environ; 2009 Jul; 32(7):917-27. PubMed ID: 19302169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis.
    Wu TY; Juan YT; Hsu YH; Wu SH; Liao HT; Fung RW; Charng YY
    Plant Physiol; 2013 Apr; 161(4):2075-84. PubMed ID: 23439916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis.
    Liu HT; Li GL; Chang H; Sun DY; Zhou RG; Li B
    Plant Cell Environ; 2007 Feb; 30(2):156-64. PubMed ID: 17238907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.
    Meiri D; Breiman A
    Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress.
    Nishizawa A; Yabuta Y; Yoshida E; Maruta T; Yoshimura K; Shigeoka S
    Plant J; 2006 Nov; 48(4):535-47. PubMed ID: 17059409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FtsH11 protease plays a critical role in Arabidopsis thermotolerance.
    Chen J; Burke JJ; Velten J; Xin Z
    Plant J; 2006 Oct; 48(1):73-84. PubMed ID: 16972866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana.
    Liu HT; Gao F; Li GL; Han JL; Liu DL; Sun DY; Zhou RG
    Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana.
    Busch W; Wunderlich M; Schöffl F
    Plant J; 2005 Jan; 41(1):1-14. PubMed ID: 15610345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.
    Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S
    Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 homolog causes defects in the induction of secondary metabolite biosynthesis.
    Bennett RN; Wenke T; Freudenberg B; Mellon FA; Ludwig-Müller J
    Plant Biol (Stuttg); 2005 Jul; 7(4):348-57. PubMed ID: 16025407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor.
    Zhang X; Wollenweber B; Jiang D; Liu F; Zhao J
    J Exp Bot; 2008; 59(4):839-48. PubMed ID: 18272919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth.
    Ogawa D; Yamaguchi K; Nishiuchi T
    J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis.
    Schramm F; Larkindale J; Kiehlmann E; Ganguli A; Englich G; Vierling E; von Koskull-Döring P
    Plant J; 2008 Jan; 53(2):264-74. PubMed ID: 17999647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.
    Lin MY; Chai KH; Ko SS; Kuang LY; Lur HS; Charng YY
    Plant Physiol; 2014 Apr; 164(4):2045-53. PubMed ID: 24520156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis.
    Yang KZ; Xia C; Liu XL; Dou XY; Wang W; Chen LQ; Zhang XQ; Xie LF; He L; Ma X; Ye D
    Plant J; 2009 Mar; 57(5):870-82. PubMed ID: 18980646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system.
    Yoshida T; Sakuma Y; Todaka D; Maruyama K; Qin F; Mizoi J; Kidokoro S; Fujita Y; Shinozaki K; Yamaguchi-Shinozaki K
    Biochem Biophys Res Commun; 2008 Apr; 368(3):515-21. PubMed ID: 18261981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.
    Myouga F; Motohashi R; Kuromori T; Nagata N; Shinozaki K
    Plant J; 2006 Oct; 48(2):249-60. PubMed ID: 16995899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.