BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16501059)

  • 1. Ancient genes in contemporary persistent microbial pathogens.
    Srinivasan V; Morowitz HJ
    Biol Bull; 2006 Feb; 210(1):1-9. PubMed ID: 16501059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications.
    Aoshima M
    Appl Microbiol Biotechnol; 2007 May; 75(2):249-55. PubMed ID: 17333169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria.
    Hügler M; Wirsen CO; Fuchs G; Taylor CD; Sievert SM
    J Bacteriol; 2005 May; 187(9):3020-7. PubMed ID: 15838028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage.
    Hügler M; Huber H; Molyneaux SJ; Vetriani C; Sievert SM
    Environ Microbiol; 2007 Jan; 9(1):81-92. PubMed ID: 17227414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile.
    Nunoura T; Chikaraishi Y; Izaki R; Suwa T; Sato T; Harada T; Mori K; Kato Y; Miyazaki M; Shimamura S; Yanagawa K; Shuto A; Ohkouchi N; Fujita N; Takaki Y; Atomi H; Takai K
    Science; 2018 Feb; 359(6375):559-563. PubMed ID: 29420286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways.
    Becerra A; Rivas M; García-Ferris C; Lazcano A; Peretó J
    Int Microbiol; 2014 Jun; 17(2):91-7. PubMed ID: 26418853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analyses of metabolic enzymes in thiosulfate- and hydrogen-grown Hydrogenobacter thermophilus cells.
    Sato Y; Kanbe H; Miyano H; Sambongi Y; Arai H; Ishii M; Igarashi Y
    Biosci Biotechnol Biochem; 2012; 76(9):1677-81. PubMed ID: 22972329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic evidence for bacterial chemolithoautotrophy based on the reductive tricarboxylic acid cycle in groundwater systems.
    Alfreider A; Vogt C
    Microbes Environ; 2012; 27(2):209-14. PubMed ID: 22791056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.
    Ronimus RS; Morgan HW
    Archaea; 2003 Oct; 1(3):199-221. PubMed ID: 15803666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.
    Guo G; Kong W; Liu J; Zhao J; Du H; Zhang X; Xia P
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8765-76. PubMed ID: 26084890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of carbohydrate metabolic pathways.
    Romano AH; Conway T
    Res Microbiol; 1996; 147(6-7):448-55. PubMed ID: 9084754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energetics of the reductive citric acid cycle in the pyrite-pulled surface metabolism in the early stage of evolution.
    Kalapos MP
    J Theor Biol; 2007 Sep; 248(2):251-8. PubMed ID: 17585946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets.
    Singh VK; Ghosh I
    Theor Biol Med Model; 2006 Aug; 3():27. PubMed ID: 16887020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation and evolution of the citric-acid cycle: a genomic perspective.
    Huynen MA; Dandekar T; Bork P
    Trends Microbiol; 1999 Jul; 7(7):281-91. PubMed ID: 10390638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus.
    Ikeda T; Yamamoto M; Arai H; Ohmori D; Ishii M; Igarashi Y
    FEBS J; 2010 Jan; 277(2):501-10. PubMed ID: 20015072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues.
    Araújo WL; Nunes-Nesi A; Nikoloski Z; Sweetlove LJ; Fernie AR
    Plant Cell Environ; 2012 Jan; 35(1):1-21. PubMed ID: 21477125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic studies on mycobacteria--II. Glyoxylate by-pass (TCA cycle) enzymes of slow and fast growing mycobacteria.
    Kannan KB; Katoch VM; Bharadwaj VP; Sharma VD; Datta AK; Shivannavar CT
    Indian J Lepr; 1985; 57(3):542-8. PubMed ID: 3831091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences.
    Stepkowski T; Brzeziński K; Legocki AB; Jaskólski M; Béna G
    Mol Phylogenet Evol; 2005 Jan; 34(1):15-28. PubMed ID: 15579379
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.