BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16502032)

  • 1. Geographic variability in radon exhalation at a rehabilitated uranium mine in the Northern Territory, Australia.
    Bollhöfer A; Storm J; Martin P; Tims S
    Environ Monit Assess; 2006 Mar; 114(1-3):313-30. PubMed ID: 16502032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock.
    Bollhöfer A; Doering C
    J Environ Radioact; 2016 Jan; 151 Pt 3():593-600. PubMed ID: 26100675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of airborne gamma-ray spectrometry for environmental assessment of the rehabilitated nabarlek uranium mine, Australia.
    Martin P; Tims S; McGill A; Ryan B; Pfitzner K
    Environ Monit Assess; 2006 Apr; 115(1-3):531-54. PubMed ID: 16649135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RADON CONCENTRATION IN THE AREA OF WASTE ROCK DUMPS, BROD, CR-CASE STUDY.
    Thinova L; Bican R; Fronka A; Johnova K; Solc J; Vosahlik J
    Radiat Prot Dosimetry; 2017 Nov; 177(1-2):149-154. PubMed ID: 28981883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics.
    Lawrence CE; Akber RA; Bollhöfer A; Martin P
    J Environ Radioact; 2009 Jan; 100(1):1-8. PubMed ID: 18995934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive analysis of shaft station radon concentrations in underground uranium mine: A case study.
    Zhao G; Hong C; Li X; Lin C; Hu P
    J Environ Radioact; 2016 Jul; 158-159():129-37. PubMed ID: 27100335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon-222 diffusion length and exhalation characteristics of uraniferous waste rock and application to mine site remediation in the Australian wet-dry tropics.
    Doering C; Akber R; Bollhöfer A; Lu P
    J Environ Radioact; 2020 May; 216():106186. PubMed ID: 32056790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radon in the environment and in dwellings in a uranium mining area in eastern India: an overview.
    Khan AH; Puranik VD
    Radiat Prot Dosimetry; 2011 May; 145(2-3):198-201. PubMed ID: 21471128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration system for measuring the radon flux density.
    Onishchenko A; Zhukovsky M; Bastrikov V
    Radiat Prot Dosimetry; 2015 Jun; 164(4):582-6. PubMed ID: 25977351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to 222Rn in ten underground mines in Iran.
    Ghiassi-Nejad M; Beitollahi MM; Fathabadi N; Nasiree P
    Radiat Prot Dosimetry; 2002; 98(2):223-5. PubMed ID: 11926373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland.
    Kozak K; Mazur J; Vaupotič J; Grządziel D; Kobal I; Omran KM
    Isotopes Environ Health Stud; 2013 Jun; 49(2):274-82. PubMed ID: 23639059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical difficulties in determining 222Rn flux density in underground uranium mines.
    Bigu J
    Health Phys; 1991 Dec; 61(6):763-73. PubMed ID: 1955322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.
    Kümmel M; Dushe C; Müller S; Gehrcke K
    J Environ Radioact; 2014 Jun; 132():131-7. PubMed ID: 24508448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology.
    Alharbi SH; Akber RA
    J Environ Radioact; 2014 Mar; 129():94-9. PubMed ID: 24412530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of radon release rate for an underground uranium mine ventilation shaft in China and radon distribution characteristics.
    Zhou Q; Liu S; Xu L; Zhang H; Xiao D; Deng J; Pan Z
    J Environ Radioact; 2019 Mar; 198():18-26. PubMed ID: 30576899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.
    Bollhöfer A; Beraldo A; Pfitzner K; Esparon A; Doering C
    Sci Total Environ; 2014 Jan; 468-469():764-73. PubMed ID: 24076500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation.
    Ongori JN; Lindsay R; Newman RT; Maleka PP
    J Environ Radioact; 2015 Feb; 140():16-24. PubMed ID: 25461511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon as a natural tracer for gas transport within uranium waste rock piles.
    Silva NC; Chagas EG; Abreu CB; Dias DC; Lopez D; Guerreiro ET; Alberti HL; Braz ML; Branco O; Fleming P
    Radiat Prot Dosimetry; 2014 Jul; 160(1-3):74-7. PubMed ID: 24729565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.
    Panigrahi DC; Sahu P; Mishra DP
    J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.