These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 16502032)
1. Geographic variability in radon exhalation at a rehabilitated uranium mine in the Northern Territory, Australia. Bollhöfer A; Storm J; Martin P; Tims S Environ Monit Assess; 2006 Mar; 114(1-3):313-30. PubMed ID: 16502032 [TBL] [Abstract][Full Text] [Related]
2. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock. Bollhöfer A; Doering C J Environ Radioact; 2016 Jan; 151 Pt 3():593-600. PubMed ID: 26100675 [TBL] [Abstract][Full Text] [Related]
3. Use of airborne gamma-ray spectrometry for environmental assessment of the rehabilitated nabarlek uranium mine, Australia. Martin P; Tims S; McGill A; Ryan B; Pfitzner K Environ Monit Assess; 2006 Apr; 115(1-3):531-54. PubMed ID: 16649135 [TBL] [Abstract][Full Text] [Related]
4. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland). Fijałkowska-Lichwa L J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759 [TBL] [Abstract][Full Text] [Related]
5. RADON CONCENTRATION IN THE AREA OF WASTE ROCK DUMPS, BROD, CR-CASE STUDY. Thinova L; Bican R; Fronka A; Johnova K; Solc J; Vosahlik J Radiat Prot Dosimetry; 2017 Nov; 177(1-2):149-154. PubMed ID: 28981883 [TBL] [Abstract][Full Text] [Related]
6. Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics. Lawrence CE; Akber RA; Bollhöfer A; Martin P J Environ Radioact; 2009 Jan; 100(1):1-8. PubMed ID: 18995934 [TBL] [Abstract][Full Text] [Related]
7. Predictive analysis of shaft station radon concentrations in underground uranium mine: A case study. Zhao G; Hong C; Li X; Lin C; Hu P J Environ Radioact; 2016 Jul; 158-159():129-37. PubMed ID: 27100335 [TBL] [Abstract][Full Text] [Related]
8. Radon-222 diffusion length and exhalation characteristics of uraniferous waste rock and application to mine site remediation in the Australian wet-dry tropics. Doering C; Akber R; Bollhöfer A; Lu P J Environ Radioact; 2020 May; 216():106186. PubMed ID: 32056790 [TBL] [Abstract][Full Text] [Related]
9. Radon in the environment and in dwellings in a uranium mining area in eastern India: an overview. Khan AH; Puranik VD Radiat Prot Dosimetry; 2011 May; 145(2-3):198-201. PubMed ID: 21471128 [TBL] [Abstract][Full Text] [Related]
10. Calibration system for measuring the radon flux density. Onishchenko A; Zhukovsky M; Bastrikov V Radiat Prot Dosimetry; 2015 Jun; 164(4):582-6. PubMed ID: 25977351 [TBL] [Abstract][Full Text] [Related]
11. Exposure to 222Rn in ten underground mines in Iran. Ghiassi-Nejad M; Beitollahi MM; Fathabadi N; Nasiree P Radiat Prot Dosimetry; 2002; 98(2):223-5. PubMed ID: 11926373 [TBL] [Abstract][Full Text] [Related]
12. The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland. Kozak K; Mazur J; Vaupotič J; Grządziel D; Kobal I; Omran KM Isotopes Environ Health Stud; 2013 Jun; 49(2):274-82. PubMed ID: 23639059 [TBL] [Abstract][Full Text] [Related]
13. Practical difficulties in determining 222Rn flux density in underground uranium mines. Bigu J Health Phys; 1991 Dec; 61(6):763-73. PubMed ID: 1955322 [TBL] [Abstract][Full Text] [Related]
14. Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas. Kümmel M; Dushe C; Müller S; Gehrcke K J Environ Radioact; 2014 Jun; 132():131-7. PubMed ID: 24508448 [TBL] [Abstract][Full Text] [Related]
15. Radon-222 activity flux measurement using activated charcoal canisters: revisiting the methodology. Alharbi SH; Akber RA J Environ Radioact; 2014 Mar; 129():94-9. PubMed ID: 24412530 [TBL] [Abstract][Full Text] [Related]
16. Estimation of radon release rate for an underground uranium mine ventilation shaft in China and radon distribution characteristics. Zhou Q; Liu S; Xu L; Zhang H; Xiao D; Deng J; Pan Z J Environ Radioact; 2019 Mar; 198():18-26. PubMed ID: 30576899 [TBL] [Abstract][Full Text] [Related]
17. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study. Bollhöfer A; Beraldo A; Pfitzner K; Esparon A; Doering C Sci Total Environ; 2014 Jan; 468-469():764-73. PubMed ID: 24076500 [TBL] [Abstract][Full Text] [Related]
18. Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation. Ongori JN; Lindsay R; Newman RT; Maleka PP J Environ Radioact; 2015 Feb; 140():16-24. PubMed ID: 25461511 [TBL] [Abstract][Full Text] [Related]
19. Radon as a natural tracer for gas transport within uranium waste rock piles. Silva NC; Chagas EG; Abreu CB; Dias DC; Lopez D; Guerreiro ET; Alberti HL; Braz ML; Branco O; Fleming P Radiat Prot Dosimetry; 2014 Jul; 160(1-3):74-7. PubMed ID: 24729565 [TBL] [Abstract][Full Text] [Related]
20. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines. Panigrahi DC; Sahu P; Mishra DP J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]