These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16502278)

  • 1. A water quality monitoring network design methodology for the selection of critical sampling points: part II.
    Strobl RO; Robillard PD; Day RL; Shannon RD; McDonnell AJ
    Environ Monit Assess; 2006 Nov; 122(1-3):319-34. PubMed ID: 16502278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A water quality monitoring network design methodology for the selection of critical sampling points: Part I.
    Strobl RO; Robillard PD; Shannon RD; Day RL; McDonnell AJ
    Environ Monit Assess; 2006 Jan; 112(1-3):137-58. PubMed ID: 16404538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical sampling points methodology: case studies of geographically diverse watersheds.
    Strobl RO; Robillard PD; Debels P
    Environ Monit Assess; 2007 Jun; 129(1-3):115-31. PubMed ID: 16957843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay Watershed.
    Brakebill JW; Preston SD
    Environ Monit Assess; 2003; 81(1-3):73-84. PubMed ID: 12620006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model.
    Bhaduri B; Harbor J; Engel B; Grove M
    Environ Manage; 2000 Dec; 26(6):643-58. PubMed ID: 11029115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of runoff and water quality using HSPF and SWMM.
    Lee SB; Yoon CG; Jung KW; Hwang HS
    Water Sci Technol; 2010; 62(6):1401-9. PubMed ID: 20861556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of water quality and identification of polluted risky regions based on field observations & GIS in the Honghe River watershed, China.
    Yan CA; Zhang W; Zhang Z; Liu Y; Deng C; Nie N
    PLoS One; 2015; 10(3):e0119130. PubMed ID: 25768942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model.
    Alexander RB; Smith RA; Schwarz GE
    Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of simulation mass balance modeling to estimate phosphorus and bacteria dynamics in watersheds.
    Cassell EA; Meals DW; Aschmann SG; Anderson DP; Rosen BH; Kort RL; Dorioz JM
    Water Sci Technol; 2002; 45(9):157-66. PubMed ID: 12079098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting water quality in unmonitored watersheds using artificial neural networks.
    Kalin L; Isik S; Schoonover JE; Lockaby BG
    J Environ Qual; 2010; 39(4):1429-40. PubMed ID: 20830930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.
    Wu L; Long TY; Li CM
    Water Sci Technol; 2010; 61(6):1601-16. PubMed ID: 20351440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.
    Lin CE; Kao CM; Lai YC; Shan WL; Wu CY
    Environ Monit Assess; 2009 Nov; 158(1-4):319-31. PubMed ID: 18956245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.
    Zhang Z; Fukushima T; Onda Y; Mizugaki S; Gomi T; Kosugi K; Hiramatsu S; Kitahara H; Kuraji K; Terajima T; Matsushige K; Tao F
    Sci Total Environ; 2008 Feb; 390(1):215-26. PubMed ID: 18022217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds.
    Viviano G; Salerno F; Manfredi EC; Polesello S; Valsecchi S; Tartari G
    Water Res; 2014 Nov; 64():265-277. PubMed ID: 25076012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost-effective and efficient framework to determine water quality monitoring network locations.
    Alilou H; Moghaddam Nia A; Keshtkar H; Han D; Bray M
    Sci Total Environ; 2018 May; 624():283-293. PubMed ID: 29253776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Watershed vulnerability predictions for the Ozarks using landscape models.
    Lopez RD; Nash MS; Heggem DT; Ebert DW
    J Environ Qual; 2008; 37(5):1769-80. PubMed ID: 18689738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.
    Panagopoulos Y; Makropoulos C; Mimikou M
    J Environ Manage; 2011 Oct; 92(10):2823-35. PubMed ID: 21742430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.