BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16502465)

  • 1. Separation of phenolic acids by capillary electrophoresis with indirect contactless conductometric detection.
    Kubán P; Sterbová D; Kubán V
    Electrophoresis; 2006 Apr; 27(7):1368-75. PubMed ID: 16502465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a contactless conductometric detector for the simultaneous determination of small anions and cations by capillary electrophoresis with dual-opposite end injection.
    Kubán P; Karlberg B; Kubán P; Kubán V
    J Chromatogr A; 2002 Jul; 964(1-2):227-41. PubMed ID: 12198852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion exchange preconcentration and separation of mercury species by CE with indirect contactless conductometric detection.
    Houserová P; Kubán P; Kubán V
    Electrophoresis; 2006 Nov; 27(22):4508-15. PubMed ID: 17066384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of capillary electrophoresis with electrokinetic supercharging and sweeping for the on-line preconcentration of phenolic acids.
    Lin YH; Huang HC; Hsu WL
    Anal Bioanal Chem; 2015 Sep; 407(23):7093-100. PubMed ID: 26159571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of perfluorocarboxylic acids using capillary electrophoresis with UV detection.
    Wójcik L; Szostek B; Maruszak W; Trojanowicz M
    Electrophoresis; 2005 Mar; 26(6):1080-8. PubMed ID: 15765482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging a sensitive capillary electrophoresis-ultraviolet detection method with chemometric exploratory data analysis for the determination of phenolic acids and subsequent characterization of avocado fruit.
    Hurtado-Fernández E; Contreras-Gutiérrez PK; Cuadros-Rodríguez L; Carrasco-Pancorbo A; Fernández-Gutiérrez A
    Food Chem; 2013 Dec; 141(4):3492-503. PubMed ID: 23993512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene quantum dots as additives in capillary electrophoresis for separation cinnamic acid and its derivatives.
    Sun Y; Bi Q; Zhang X; Wang L; Zhang X; Dong S; Zhao L
    Anal Biochem; 2016 May; 500():38-44. PubMed ID: 26893106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary electrophoresis of anionic analytes in methanol: effect of counter-ions on electrophoretic mobility.
    Porras SP; Riekkola ML; Kenndler E
    Electrophoresis; 2002 Feb; 23(3):367-74. PubMed ID: 11870735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous determination of inorganic and organic anions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection.
    Kubán P; Kubán P; Kubán V
    Electrophoresis; 2002 Nov; 23(21):3725-34. PubMed ID: 12432535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a method for determination of phenolic acids in exotic fruits by capillary electrophoresis.
    Fukuji TS; Tonin FG; Tavares MF
    J Pharm Biomed Anal; 2010 Jan; 51(2):430-8. PubMed ID: 19545963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance capillary electrophoretic separation of carbohydrates with indirect UV detection using diethylamine and borate as electrolyte additives.
    Liu Y; Shu C; Lamb JD
    J Capillary Electrophor; 1997; 4(3):97-103. PubMed ID: 9484655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of oxalate, formate and glycolate in human body fluid samples by capillary electrophoresis with contactless conductometric detection.
    Kubáň P; Ďurč P; Bittová M; Foret F
    J Chromatogr A; 2014 Jan; 1325():241-6. PubMed ID: 24388242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual UV-absorbing background electrolytes for simultaneous separation and detection of small cations and anions by capillary zone electrophoresis.
    Xiong X; Li SF
    Electrophoresis; 1998 Sep; 19(12):2243-51. PubMed ID: 9761211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of arsenic species by capillary electrophoresis with sample-stacking techniques.
    Chen ZL; Lin JM; Naidu R
    Anal Bioanal Chem; 2003 Mar; 375(5):679-84. PubMed ID: 12638053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous separation of anions and cations by capillary electrophoresis with high magnitude, reversed electroosmotic flow.
    Johns C; Yang W; Macka M; Haddad PR
    J Chromatogr A; 2004 Oct; 1050(2):217-22. PubMed ID: 15508315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous contactless conductivity detection and UV detection for the study of separation of tamsulosin enantiomers in discontinuous electrolyte systems by CE.
    Petr J; Maier V; Horáková J; Sevcík J
    Electrophoresis; 2006 Dec; 27(23):4735-45. PubMed ID: 17080485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of cyclodextrins and their derivatives by capillary electrophoresis with indirect UV and conductivity detection.
    Pumera M; Jelínek I; Jindrich J
    Fresenius J Anal Chem; 2001 Apr; 369(7-8):666-9. PubMed ID: 11371069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of drying oils used as binding media for objects of art by capillary electrophoresis with indirect UV and conductivity detection.
    Surowiec I; Kaml I; Kenndler E
    J Chromatogr A; 2004 Jan; 1024(1-2):245-54. PubMed ID: 14753726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a stacking-CZE method for the analysis of phenolic acids.
    Safra J; Pospísilová M; Kavalírová A
    J Pharm Biomed Anal; 2006 Jun; 41(3):1022-4. PubMed ID: 16488099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids.
    Gotti R; Amadesi E; Fiori J; Bosi S; Bregola V; Marotti I; Dinelli G
    J Chromatogr A; 2018 Jan; 1532():208-215. PubMed ID: 29195662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.