These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 165025)

  • 1. Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy.
    Boothroyd B
    Clin Orthop Relat Res; 1975; (106):290-310. PubMed ID: 165025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural observations of amorphous bone mineral in avian bone.
    Miller AL; Schraer H
    Calcif Tissue Res; 1975 Sep; 18(4):311-24. PubMed ID: 1182585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solid, calcium-phosphate mineral phases in embryonic chick bone characterized by high-voltage electron diffraction.
    Lee DD; Landis WJ; Glimcher MJ
    J Bone Miner Res; 1986 Oct; 1(5):425-32. PubMed ID: 3503557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ultrastructural organization of the human lamellar bone tissue mineral component in aged and elderly].
    Denisov-Nikol'skiÄ­ IuI; Zhilkin BA; Doktorov AA; MatveÄ­chuk IV
    Morfologiia; 2002; 122(5):79-83. PubMed ID: 12530314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ulstrastructure of the extracellular phase of bone as observed in frozen thin sections.
    Gay CV
    Calcif Tissue Res; 1977 Oct; 23(3):215-23. PubMed ID: 902139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections.
    Schwarcz HP
    Semin Cell Dev Biol; 2015 Oct; 46():44-50. PubMed ID: 26165821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques.
    Landis WJ; Glimcher MJ
    J Ultrastruct Res; 1978 May; 63(2):188-223. PubMed ID: 353299
    [No Abstract]   [Full Text] [Related]  

  • 14. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.
    Addison WN; Nelea V; Chicatun F; Chien YC; Tran-Khanh N; Buschmann MD; Nazhat SN; Kaartinen MT; Vali H; Tecklenburg MM; Franceschi RT; McKee MD
    Bone; 2015 Feb; 71():244-56. PubMed ID: 25460184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The composition of recrystallized bone mineral.
    Biltz RM; Pellegrino ED
    J Dent Res; 1983 Dec; 62(12):1190-5. PubMed ID: 6581195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of brushite in newly deposited bone mineral from embryonic chicks.
    Roufosse AH; Landis WJ; Sabine WK; Glimcher MJ
    J Ultrastruct Res; 1979 Sep; 68(3):235-55. PubMed ID: 490754
    [No Abstract]   [Full Text] [Related]  

  • 18. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A search for apatite crystals in the gap zone of collagen fibrils in bone using dark-field illumination.
    Schwarcz HP; Binkley DM; Luo L; Grandfield K
    Bone; 2020 Jun; 135():115304. PubMed ID: 32145461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE PROBLEM OF DEMINERALISATION IN THIN SECTIONS OF FULLY CALCIFIED BONE.
    BOOTHROYD B
    J Cell Biol; 1964 Jan; 20(1):165-73. PubMed ID: 14105207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.