BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16502620)

  • 1. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode.
    Chan MC; Su YS; Lin CF; Sun CK
    Scanning; 2006; 28(1):11-4. PubMed ID: 16502620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.
    Ko T; Adler D; Fujimoto J; Mamedov D; Prokhorov V; Shidlovski V; Yakubovich S
    Opt Express; 2004 May; 12(10):2112-9. PubMed ID: 19475046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh resolution optical coherence tomography using a superluminescent light source.
    Kowalevicz A; Ko T; Hartl I; Fujimoto J; Pollnau M; Salathé R
    Opt Express; 2002 Apr; 10(7):349-53. PubMed ID: 19436366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging.
    Zhu D; Shen M; Jiang H; Li M; Wang MR; Wang Y; Ge L; Qu J; Wang J
    J Biomed Opt; 2011 Dec; 16(12):126006. PubMed ID: 22191923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr(3+):LiCAF laser.
    Wagenblast P; Ko T; Fujimoto J; Kaertner F; Morgner U
    Opt Express; 2004 Jul; 12(14):3257-63. PubMed ID: 19483850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography.
    Unterhuber A; Povazay B; Hermann B; Sattmann H; Drexler W; Yakovlev V; Tempea G; Schubert C; Anger EM; Ahnelt PK; Stur M; Morgan JE; Cowey A; Jung G; Le T; Stingl A
    Opt Lett; 2003 Jun; 28(11):905-7. PubMed ID: 12816241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.
    Wang H; Jenkins MW; Rollins AM
    Opt Commun; 2008 Apr; 281(7):. PubMed ID: 24347689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region.
    Bizheva K; Povazay B; Hermann B; Sattmann H; Drexler W; Mei M; Holzwarth R; Hoelzenbein T; Wacheck V; Pehamberger H
    Opt Lett; 2003 May; 28(9):707-9. PubMed ID: 12747714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon.
    Lu Y; Cao V; Liao M; Li W; Tang M; Li A; Smowton P; Seeds A; Liu H; Chen S
    Opt Lett; 2020 Oct; 45(19):5468-5471. PubMed ID: 33001927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Emission Wavelength Stacked InAs/GaAs Quantum Dots by Chemical Beam Epitaxy for Optical Coherence Tomography.
    Ilahi B; Zribi J; Guillotte M; Arès R; Aimez V; Morris D
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures.
    Chen S; Li W; Zhang Z; Childs D; Zhou K; Orchard J; Kennedy K; Hugues M; Clarke E; Ross I; Wada O; Hogg R
    Nanoscale Res Lett; 2015 Dec; 10(1):1049. PubMed ID: 26303141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber.
    Hartl I; Li XD; Chudoba C; Ghanta RK; Ko TH; Fujimoto JG; Ranka JK; Windeler RS
    Opt Lett; 2001 May; 26(9):608-10. PubMed ID: 18040398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental characteristics of a synthesized light source for optical coherence tomography.
    Sato M; Wakaki I; Watanabe Y; Tanno N
    Appl Opt; 2005 May; 44(13):2471-81. PubMed ID: 15881053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography.
    Stumpf MC; Zeller SC; Schlatter A; Okuno T; Südmeyer T; Keller U
    Opt Express; 2008 Jul; 16(14):10572-9. PubMed ID: 18607472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of optical spectral throughput of acousto-optic modulators for high-speed optical coherence tomography.
    Chen Y; Liu X; Cobb M; Myaing M; Sun T; Li X
    Opt Express; 2005 Oct; 13(20):7816-22. PubMed ID: 19498809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational 3D resolution enhancement for optical coherence tomography with a narrowband visible light source.
    de Wit J; Glentis GO; Kalkman J
    Biomed Opt Express; 2023 Jul; 14(7):3532-3554. PubMed ID: 37497501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source.
    Hsiung PL; Chen Y; Ko T; Fujimoto J; de Matos C; Popov S; Taylor J; Gapontsev V
    Opt Express; 2004 Nov; 12(22):5287-95. PubMed ID: 19484089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source.
    Wachulak P; Bartnik A; Fiedorowicz H
    Sci Rep; 2018 May; 8(1):8494. PubMed ID: 29855555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the Coherence of Broadband Sources using Optical Phase Space Contours.
    Wax A; Bali S; Alphonse GA; Thomas JE
    J Biomed Opt; 1999 Oct; 4(4):482-9. PubMed ID: 23014622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.